I am using this code in a part of my document.
Code: Select all
\begin{align}
&\int\left(-2\sin^{2}(t)-2\cos(t)\sin^{2}t-\sin^{2}(t)\cos(t)-2\sin(t)\left(1+\cos(t)\left(\frac{2}{\sqrt{1+\cos(t)}}\right)\right)\,\mathrm dt\right)\\ &=-2\int\left(\sin^{2}(t)\,\mathrm dt\right)-3\int\left(\cos(t)\sin^{2}(t)\right\,\mathrm dt)-2\int\left(\left(\left(1+\cos(t)\right)\left(\frac{2\left(\sin(t)\right)}{\sqrt{1+\cos(t)}}\right)\right)\,\mathrm dt\right)\\
&=-2\int\left(\frac{1-\cos(2t)}{2}\,\mathrm dt\right)-\frac{3}{2}\int\left(\sqrt{\abs{u}}\,\mathrm du\right)_{u=\sin^{2}(t)}-2\int\left(\left(\left(1+\cos(t)\right)\left(\frac{2\left(\sin(t)\right)}{\sqrt{1+\cos(t)}}\right)\right)\,\mathrm dt\right)\\ &=-2\left(\frac{t}{2}-\frac{\sin(2t)}{4}\right)-\frac{3}{2}\frac{2u^{\frac{3}{2}}}{3}-2\int\left(\left(\left(1+\cos(t)\right)\left(\frac{2\left(\sin(t)\right)}{\sqrt{1+\cos(t)}}\right)\right)\,\mathrm dt\right)\\
&=-t+\frac{\sin(2t)}{2}-u^{\frac{3}{2}}-4\int\left(\left(\left(1+\cos(t)\right)\left(\frac{\sin(t)}{\sqrt{1+\cos(t)}}\right)\right)\,\mathrm dt\right)\\
&=-t+\frac{\sin(2t)}{2}-u^{\frac{3}{2}}+4\int\left(\frac{u\,\mathrm du}{\sqrt{u}}\right)\\
&=-t+\frac{\sin(2t)}{2}-u^{\frac{3}{2}}+4\int\left(u^{\frac{1}{2}}\,\mathrm du\right)\\
&\simeq -t+\frac{\sin(2t)}{2}-u^{\frac{3}{2}}+4\left(\frac{u^{\frac{3}{2}}\cdot 2}{3}\right)\\
&=-t+\frac{\sin(2t)}{2}-u^{\frac{3}{2}}+8\left(\frac{u^{\frac{3}{2}}}{3}\right)\\
&=-t+\frac{\sin(2t)}{2}-\left(\sin^{2}(t)\right)^{\frac{3}{2}}+8\left(\frac{\left(\sin^{2}(t)\right)^{\frac{3}{2}}}{3}\right)\\
&=-t+\frac{\sin(2t)}{2}-\left(\sin^{3}(t)\right)+8\left(\frac{\left(\sin^{3}(t)\right)}{3}\right).
\end{align}
Missing delimiter (. inserted) <to be read again> \mskip \end{align}.
I have looked many times at my code, but I cannot find any mismatched brackets.
Thanks for help.