Page LayoutText Dissapearing

Information and discussion about page layout specific issues (e.g. header and footer lines, page formats, page numbers).
Post Reply
kwokowok
Posts: 3
Joined: Tue Jun 01, 2021 6:40 am

Text Dissapearing

Post by kwokowok »

Hi, i am doing some coding for a maths class, and whenever I try put a box on a new page it is just invisible. Any help would be appreciated

Code: Select all

\documentclass[12pt, letterpaper]{report}
\usepackage[utf8]{inputenc}
\usepackage[legalpaper, portrait, top=0.0in, bottom=-0.8in, left=0.9in, right=0.9in]{geometry}
\usepackage{titlesec}
\titleformat{\chapter}[display]
  {\normalfont\bfseries}{}{0pt}{\huge}
	\addtolength{\topmargin}{-2.5in}
\usepackage{graphicx}
\graphicspath{ {images/} }
\usepackage{setspace}
\setstretch{1.5}
\usepackage{tikz}
\usetikzlibrary{datavisualization.formats.functions}
\usepackage{pgfplots}
\pgfplotsset{my style/.append style={axis x line=middle, axis y line=
middle, xlabel={$x$}, ylabel={$y$}, axis equal }}
\pgfplotsset{compat=1.17}
\setlength{\parskip}{1em}
\begin{document}
\chapter{}
\section{Secants and Tangents}
\begin{flushleft}
If we consider function $f(x)$ and graph it on a Cartesian plane, different points on the curve are going to be more 'steep' than others, as evident through the graph below. By looking closely at the two points, it can be clearly shown that despite both points existing on the same curve, $f(x)$ at Point A is much more steep than Point B. 
\\
\begin{center}
\begin{tikzpicture}
\begin{axis}[
x=1.0cm,y=1.0cm,
axis lines=middle,
xmin=-1.5,
xmax=6.5,
ymin=-1.0,
ymax=4.0298,
xtick={-1.0,0.0,...,6.0},
ytick={-1.0,0.0,...,4.0},]
\clip(-1.5,-1.) rectangle (6.5,4.0298);
\draw[line width=1.pt,smooth,samples=100,domain=-0.9999920000000018:6.5] plot(\x,{2*ln((\x)+1)});
\begin{scriptsize}
\draw[color=black] (-0.2,-0.93) node {$f$};
\draw [fill=black] (0.94,1.3253759461504735) circle (2.5pt);
\draw[color=black] (1.08,1.69) node {$A$};
\draw [fill=black] (4.76,3.5018749494156) circle (2.5pt);
\draw[color=black] (4.9,3.87) node {$B$};
\end{scriptsize}
\end{axis}
\end{tikzpicture}
\\
\fontsize{8pt}{8pt}Figure 1
\\
\end{center}
\par
Mathematicians are able to determine how steep a curve is at a point by finding the \emph{gradient}. However, we haven't dealt with changing gradients before, as linear equations in the form $y=mx+b$ had a constant gradient of $m$, which is easily found. 
\par
As such, we can find the gradient at various points by constructing a line which only touches the curve at each respective point.
\\
\begin{center}
\begin{tikzpicture}
\begin{axis}[
x=1.0cm,y=1.0cm,
axis lines=middle,
xmin=-1.5,
xmax=7.0,
ymin=-1.0,
ymax=5.0,
xtick={-0.0,1.0,2.0,...,6.0},
ytick={-0.0,1.0,2.0,...,4.0},]
\draw[line width=1.pt,smooth,samples=100,domain=-0.8:7.0] plot(\x,{2*ln((\x)+1)});
\draw [line width=1.pt,domain=-1.5:7.] plot(\x,{(--0.39--1.*\x)/1.});
\draw [line width=1.pt,domain=-1.5:7.] plot(\x,{(--1.8878--0.34*\x)/1.});
\begin{scriptsize}
\draw[color=black] (-0.6569985630725312,-5.94725801699136) node {$f$};
\draw [fill=black] (1.,1.3862943611198906) circle (2.5pt);
\draw[color=black] (1.1645293126567067,1.8292648370833955) node {$A$};
\draw [fill=black] (4.831478851964947,3.526541261250383) circle (2.5pt);
\draw[color=black] (4.994408435984848,3.9543806921008215) node {$B$};
\draw[color=black] (8.917699245247823,9.699199377092983) node {$g$};
\draw[color=black] (-7.4994045577990285,-0.24914517496661417) node {$h$};
\end{scriptsize}
\end{axis}
\end{tikzpicture}
\\
\fontsize{8pt}{8pt}Figure 2
\end{center}
So how can we find the gradient of these tangent? For more curves, its inaccurate to just approximate the curve however we can actually use \emph{limits} to find our tangent.
\newpage
\fbox{\begin{minipage}{40em}
\begin{center}

\textbf{Revision:Limits}
\end{center}

\end{minipage}}


\end{flushleft}
\end{document}
Last edited by Stefan Kottwitz on Tue Jun 01, 2021 8:36 am, edited 1 time in total.
Reason: code marked

Recommended reading 2024:

LaTeXguide.org • LaTeX-Cookbook.net • TikZ.org

NEW: TikZ book now 40% off at Amazon.com for a short time.

User avatar
Stefan Kottwitz
Site Admin
Posts: 10321
Joined: Mon Mar 10, 2008 9:44 pm

Text Dissapearing

Post by Stefan Kottwitz »

Hi,

welcome to the forum!

The chapter format may cause it. Check by commenting it out like this:

Code: Select all

%\titleformat{\chapter}[display]
%  {\normalfont\bfseries}{}{0pt}{\huge}
%	\addtolength{\topmargin}{-2.5in}
And remove \chapter{} as you don't have a heading. In that case, you can also use the article class instead of report.

Furthermore, a zero top margin by top=0.0in is strange. Text would start at the very top of the page.

And better remove this flushleft environment, just type \raggedright at the beginning if you don't want full justification.

For testing, here some edited code, where you can see the box appearing if you click the Run LaTeX here button:

Code: Select all

\documentclass[12pt, letterpaper]{article}
\usepackage[utf8]{inputenc}
%\usepackage[legalpaper, portrait, top=0.0in, bottom=-0.8in, left=0.9in, right=0.9in]{geometry}
%\usepackage{titlesec}
%\titleformat{\chapter}[display]
%  {\normalfont\bfseries}{}{0pt}{\huge}
%	\addtolength{\topmargin}{-2.5in}
\usepackage{graphicx}
\graphicspath{ {images/} }
\usepackage{setspace}
\setstretch{1.5}
\usepackage{tikz}
\usetikzlibrary{datavisualization.formats.functions}
\usepackage{pgfplots}
\pgfplotsset{my style/.append style={axis x line=middle, axis y line=
middle, xlabel={$x$}, ylabel={$y$}, axis equal }}
\pgfplotsset{compat=1.17}
\setlength{\parskip}{1em}
\begin{document}
\raggedright
%\chapter{}
\section{Secants and Tangents}
%\begin{flushleft}
If we consider function $f(x)$ and graph it on a Cartesian plane, different points on the curve are going to be more 'steep' than others, as evident through the graph below. By looking closely at the two points, it can be clearly shown that despite both points existing on the same curve, $f(x)$ at Point A is much more steep than Point B. 
\\
\begin{center}
\begin{tikzpicture}
\begin{axis}[
x=1.0cm,y=1.0cm,
axis lines=middle,
xmin=-1.5,
xmax=6.5,
ymin=-1.0,
ymax=4.0298,
xtick={-1.0,0.0,...,6.0},
ytick={-1.0,0.0,...,4.0},]
\clip(-1.5,-1.) rectangle (6.5,4.0298);
\draw[line width=1.pt,smooth,samples=100,domain=-0.9999920000000018:6.5] plot(\x,{2*ln((\x)+1)});
\begin{scriptsize}
\draw[color=black] (-0.2,-0.93) node {$f$};
\draw [fill=black] (0.94,1.3253759461504735) circle (2.5pt);
\draw[color=black] (1.08,1.69) node {$A$};
\draw [fill=black] (4.76,3.5018749494156) circle (2.5pt);
\draw[color=black] (4.9,3.87) node {$B$};
\end{scriptsize}
\end{axis}
\end{tikzpicture}
\\
\fontsize{8pt}{8pt}Figure 1
\\
\end{center}
\par
Mathematicians are able to determine how steep a curve is at a point by finding the \emph{gradient}. However, we haven't dealt with changing gradients before, as linear equations in the form $y=mx+b$ had a constant gradient of $m$, which is easily found. 
\par
As such, we can find the gradient at various points by constructing a line which only touches the curve at each respective point.
\\
\begin{center}
\begin{tikzpicture}
\begin{axis}[
x=1.0cm,y=1.0cm,
axis lines=middle,
xmin=-1.5,
xmax=7.0,
ymin=-1.0,
ymax=5.0,
xtick={-0.0,1.0,2.0,...,6.0},
ytick={-0.0,1.0,2.0,...,4.0},]
\draw[line width=1.pt,smooth,samples=100,domain=-0.8:7.0] plot(\x,{2*ln((\x)+1)});
\draw [line width=1.pt,domain=-1.5:7.] plot(\x,{(--0.39--1.*\x)/1.});
\draw [line width=1.pt,domain=-1.5:7.] plot(\x,{(--1.8878--0.34*\x)/1.});
\begin{scriptsize}
\draw[color=black] (-0.6569985630725312,-5.94725801699136) node {$f$};
\draw [fill=black] (1.,1.3862943611198906) circle (2.5pt);
\draw[color=black] (1.1645293126567067,1.8292648370833955) node {$A$};
\draw [fill=black] (4.831478851964947,3.526541261250383) circle (2.5pt);
\draw[color=black] (4.994408435984848,3.9543806921008215) node {$B$};
\draw[color=black] (8.917699245247823,9.699199377092983) node {$g$};
\draw[color=black] (-7.4994045577990285,-0.24914517496661417) node {$h$};
\end{scriptsize}
\end{axis}
\end{tikzpicture}
\\
\fontsize{8pt}{8pt}Figure 2
\end{center}
So how can we find the gradient of these tangent? For more curves, its inaccurate to just approximate the curve however we can actually use \emph{limits} to find our tangent.
\newpage
\fbox{\begin{minipage}{40em}
\begin{center}

\textbf{Revision:Limits}
\end{center}

\end{minipage}}


%\end{flushleft}
\end{document}
Stefan
LaTeX.org admin
Post Reply