I have a trouble with this tex file, I put all my references in the file as usual but it only shows 13-16 references only, I am using Texpad in mac os and it shows no error in generating .
Here is the minimal example with all my references . I am forced to use this document class {amsart} according to the journal. May anyone help for this problem please.
Thanks in advanced .
\documentclass[12pt, reqno]{amsart} \usepackage[utf8]{inputenc} \usepackage{amssymb,amsbsy,amsmath,amsfonts,amssymb,amscd} \usepackage{amsthm} \usepackage[mathcal]{eucal} \usepackage{eufrak} \usepackage[mathcal]{eucal} \usepackage{eufrak}\date{} \usepackage[T1]{fontenc} \usepackage[all]{xy} \usepackage{verbatim} %\usepackage{amsmath} %\usepackage{amssymb} \usepackage{epsfig} \usepackage{float} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, plainpages, backref]{hyperref} %\usepackage{geometry} %\geometry{a4paper,top=2cm,bottom=2cm,hmargin=2cm} %\usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} %\usepackage[bookmarksnumbered, plainpages, backref]{hyperref} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \newcommand{\N}{\mathbb N} \newcommand{\R}{\mathbb R} \numberwithin{equation}{section} \begin{document} \setcounter{page}{1} \title{article title} % Information for first author \author{aa} \address{} \email {} % Information for second author \author{A} \address{} \email{} \subjclass[2010]{46-xx, 54Hxx, 37Kxx, 44-xx, 34K30, 35R09, 35R10, 47G20, 47B38, 47G10, 34A12. } \dedicatory{t} \keywords{ hhh.} %\date{Received: 2 March 2006; Revised: 25 August 2006. %\newline \indent $^{*}$ Corresponding author} \maketitle \begin{thebibliography}{9} \bibitem{K} Kreyzig, E. \textbf{ Introductory Functional Analysis with Applications}, New York: John Wiley and Sons $(1978)$. \bibitem{AS} Aleomraninejad, S.M.A. Rezapour, Sh.. Shahzad, N. Some fixed point results on a metric space with a graph Topol. Appl. 159 (3), 659-663 (2012) \bibitem{B} Bakhtin, I.A. The contraction mapping principle in almost metric space. Funct. Anal. [Ula yanovsk. Gos. Ped. Inst., Ula yanovsk] 30, 26-37 (1989) (Russian) \bibitem{BD} Beer, G. Dontchev, A.L. The weak Ekeland variational principle and fixed points. Nonlinear Anal. 102, 91-96 (2014) \bibitem{B} Berinde, V. Contractii Generalizate si Aplicatii, vol. 22 (Editura Cub Press, Baia Mare, 1997) (in Romanian) \bibitem{B} Berinde, V. Generalized contractions in quasimetric spaces, in Seminar on Fixed Point Theory, Babes-Bolyai Univ., Cluj-Napoca. Preprint 93-3 (1993), pp. 3-9 \bibitem{B} Bojor, F. Fixed point of $\psi$ -contraction in metric spaces endowed with a graph. An. Univ. Craiova Ser. Mat. Inform. 37(4), 85-92 (2010) \bibitem{BMV} Bota, M. Molnar, A. Varga, C. On Ekelandas variational principle in b-metric spaces. Fixed Point Theory 12(2), 21-28 (2011) \bibitem{CMVZ} Cortelazzo, G. Mian, G. Vezzi, G. Zamperoni, P. Trademark shapes description by string matching techniques. Pattern Recognit. 27(8), 1005-1018 (1994) \bibitem{C} Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 46(2), 263-276 (1998) \bibitem{C} Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostraviensis 1, 5â-11 (1993) \bibitem{DH} Dontchev, A.L. Hager, W.W. An inverse mapping theorem for set-valued maps. Proc. Am. Math. Soc. 121(2), 481-489 (1994) \bibitem{FKS} Fagin, R. Kumar, R. Sivakumar, D. Comparing top k lists. SIAM J. Discrete Math. 17(1), 134-160 (2003) \bibitem{FS} Fagin, R. Stockmeyer, L. Relaxing the triangle inequality in pattern matching. Int. J. Comput. Vis. 30(3), 219-231 (1998) \bibitem{H} Heinonen, J. Lectures on Analysis on Metric Spaces. Universitext (Springer, New York, 2001) \bibitem{J} Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136(4), 1359-1373 (2008) \bibitem{MP} MartAnez-Maurica, J. Pellon, M.T. Non-archimedean Chebyshev centers. Nederl. Akad. Wetensch. Indag. Math. 49(4), 417-421 (1987) \bibitem{MK} McConnell, R. Kwok, R. Curlander, J. Kober, W. Pang, S. $\psi-S$ correlation and dynamic time warping: two methods for tracking ice floes. IEEE Trans. Geosci. Remote Sens. 29(6), 1004-1012 (1991) \bibitem{M} Mycielski, J. On the existence of a shortest arc between two points of a metric space. Houston J. Math. 20(3), 491-494 (1994) \bibitem{OV} Oltra, S. Valero, O. Banachas fixed point theorem for partial metric spaces. Rend. Istid. Math. Univ. Trieste, 17-26 (2004) \bibitem{PV} Petalas, C. Vidalis, T. A fixed point theorem in non-archimedean vector spaces. Proc. Am. Math. Soc. 118(3), 819â821 (1993) \bibitem{R} Romaguera, S. On Nadleras fixed point theorem for partial metric spaces. Math. Sci. Appl. E-Notes 1, 7 pp. (2013) \bibitem{R} Rus, I.A. Generalized Contractions and Applications (Cluj University Press, Cluj-Napoca, 2001) \bibitem{SK} Samreen, M. Kamran, T. Fixed point theorems for integral G-contractions. Fixed Point Theory Appl. 2013, 11 pp. (2013) \bibitem{W} Wong, C.S. On a fixed point theorem of contractive type. Proc. Am. Math. Soc. 57(2), 283-284 (1976) \bibitem{A} Afra, J.M., Fixed point type theorem in S-metric spaces, Middle-East Journal of Scientific Research, 22(6), (2014), 864.869. \bibitem{A} Afra, J.M., Double contraction in S-metric spaces, International Journal of Mathematical Analysis, 9(3), (2015), 117.125. \bibitem{AMR} Agarwal, R. P. Meehan, M. and Regan, D. O., Fixed Point Theory and Appli- cations, Cambridge University Press, 2004. \bibitem{B} Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 2, 133-181, (1922). \bibitem{MJ} Ma, Z. and Jiang, L. $C^*$-algebra valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2015 (2015) 222 \bibitem{MJ} Ma, Z. Jiang, L. and Sun, H. $C^*$-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2014, (2014) 206. \bibitem{MJX} Ma, Z., Jiang L. and Xin Q., Fixed point theorems on operator-valued metric space, Trans. Beijing Inst. Techol., 34(10), (2014) 1078.1080. \bibitem{OO} O. Ozer, O. Omran, S. Common Fixed Point Theorems in $C^*$- Algebra Val- ued b-Metric Spaces AIP Conference Proceedings 1773, 050005 (2016) \bibitem{OO} O. Ozer, O. Omran, S. On The Generalized $C^*$- Valued Metric Spaces Related With Banach Fixed Point Theory, International Journal of Advanced and Ap- plied Sciences, Vol.4, Issue.2, (2017), 35-37. \bibitem{OO} O. Ozer, O. Omran, S. A Note on $C^*$- Algebra Valued G-Metric Space Related with Fixed Point Theorems, Bulletin of the Karaganda University- Mathemat- ics, (2019). (In Press) // \bibitem{P} Prudhvi, K., Fixed Point Theorems in S-Metric Spaces, Universal Journal of Computational Mathematics 3(2): 19-21, 2015. \bibitem{OLM} Qiaoling, X., Lining J. and Ma, Z., Common fixed point theorems in $C^*$-algebra valued metric spaces, Journal of Nonlinear Science and Applications, 9, (2016) 4617.4627. \bibitem{SSZ} Sedghi, S. Shobe, N. and Zhou, H., A common fixed point theorem in $D^*$- metric space, Fixed Point Theory Appl. (2007), 1-13. \bibitem{SS} Sedghi S., Shobe, N., A Common unique random fixed point theorems in s-Metric spaces, Journal of Prime Research in Mathematics Vol. 7(2011), 25-34 . \bibitem{SSA} Sedghi, S., Shobe, N., Aliouche, A., A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64, 258 -266, (2012). \bibitem{S} Souayah, N., A fixed point in partial b-metric spaces, An. SIstiina. Univ. "Ovid- iusa Constanaa Ser. Mat., 24(3), 351-362, (2016). \bibitem{T} Tianqing, C., Some coupled fixed point theorems in $C^*$-algebra-valued metric spaces, (2016). \bibitem{MS} Z. Mustafa, B.1 Sims, A new approach to generalized metric spaces, J. Non- linear Convex Anal. 7 (2006), 289-297. \bibitem{AAR} Aghajani, A., Abbas, M., Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca (2015, in press) \bibitem{AGD} Alber, Y.I., Guerre Delabriere, S.: Principle of weakly contractive maps in Hilbert spaces. In:NewResults in Operator Theory and its Applications, vol. 98, pp. 7â22. Birkhuser, Basel (1997) \bibitem{BBP} Boriceanu, M., Bota, M., Petrusel, A.: Mutivalued fractals in b-metric spaces. Cent. Eur. J. Math. 8(2), 367â377 (2010) \bibitem{CKRM} Choudhury, B.S., Konar, P., Rhoades, B.E., Metiya, N.: Fixed point theorems for generalized weakly contractive mappings. Nonlinear Anal. 74, 2116-2126 (2011) \bibitem{DC} Dutta, P.N., Choudhury, B.S.: A generalisation of contraction principle in metric spaces. Fixed Point Theory Appl. 2008, 406368 (2008) \bibitem{D} Doric I, D.: Common fixed point for generalized $(\psi, \phi)$-weak contractions. Appl. Math. Lett. 22, 1896- 1900 (2009) \bibitem{KS} Kumam, P., Sintunavarat, W.: The existence of fixed point theorems for partial q-set-valued quasi- contractions in b-metric spaces and related results. Fixed Point Theory Appl. 2014, 226 (2014) \bibitem{NRL} Nieto, J.J., Rodiguez - Lopez, R.: Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.) 23, 2205-2212 (2007) \bibitem{O} Olatinwo, M.O.:Some results on multi- valued weakly jungck mappings in b-metric space .Cent.Eur.J. Math 6, 610-621 (2008) \bibitem{P} Pacurar, M. Sequences of almost contractions and fixed points in b-metric spaces. Analele Univ. Vest Timis. Ser. Mat. Inform. XLVIII 3, 125-137 (2010) \bibitem{PSK} Phiangsungnoen, S., Sintunavarat, W., Kumam, P. Generalized UlamaHyer stability for fixed point equation in b-metric space via $\alpha-$ admissible. Fixed Point Theory Appl. 2014, 188 (2014) \bibitem{R} Rhoades, B.E.Some theorems on weakly contractive maps.NonlinearAnal.47,2683-2693(2001) \bibitem{SVV} Samet,B.,Vetro,C.,Vetro,P. Fixed point theorems for $\alpha-\psi$-contractive type mappings. NonlinearAnal. 75, 2154-2165 (2012) \bibitem{SPK} Sintunavarat, W., Plubtieng, S., Katchang, P. Fixed point result and applications on b-metric space endowed with an arbitrary binary relation. Fixed Point Theory Appl. 2013, 296 (2013) \bibitem{S} Sintunavarat, W. A new approach to $\alpha-\psi-$ contractive mappings and generalized Ulama Hyers stability, well- posedness and limit shadowing results. Carpathian J. Math. 31(3), 395-401 (2015) \bibitem{ZS} Zhang, Q., Song, Y. Fixed point theory for generalized $\phi$-weak contractions. Appl. Math. Lett. 22(1), 75-78 (2009) \bibitem{AAR} A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 4 (2014), 941-960. \bibitem{ACR} M. Abbas, I. Z. Chema, A. Razani, Existence of common fixed point for b-metric rational type contraction, Filomat 30(6) (2016), 1413-1429 \bibitem{B} I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal., 30 (1989), 26-37. \bibitem{CTA} S. Chandok, K. Tas, A.H. Ansari, Some fixed point results for TAC-type contractive mappings, J. Function Spaces, 2016. \bibitem{C} S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform., Univ. Ostrav., 1(1993), 5-11. \bibitem{HJR} H. Huang, J.Vujakovi Ic, S. Radenovi Ic, A note on common fixed point theorems for isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 808-815 \bibitem{HRV} H. Huang, S. Radenovi Ic, J. Vujakovi Ic, On some recent coincidence and immediate conse- quences in partially ordered b-metric spaces, Fixed Point Theory Appl., 2015:63 (2015),1-18. \bibitem{HDKR} N. Hussain, D. Dori Ic, Z. Kadelburg, S. Radenovi Ic, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 126 (2012). \bibitem{HPRK} N. Hussain, V. Parvaneh, J. R. Roshan, Z. Kadelburg, Fixed points of cyclic $(\psi,\phi,L,A,B)-$ contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 256 (2013). \bibitem{JRSV} M. Jleli, V. C . Raji Ic, B. Samet, C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl. 12 (2012), 175â192. \bibitem{JK} M. Jovanovi Ic, Z. Kadelburg, S. Radenovi Ic, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., Article ID 978121 (2010), 15 pages. \bibitem{KP} Z. Kadelburg,Lj. Paunovi Ic,S. Radenovi Ic, Anote on fixed pointt heorems for weaklyT - Kannan and weakly T- Chatterjea contractions in b-metric spacesa, Gulf J. Math., 3 (2015), 57-67. \bibitem{KH} M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129. \bibitem{MM} R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl. 19 (3), (2017), 2153-2163. \bibitem{C} Czerwik S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena. 1998;46:263-276. \bibitem{SCKS} Singh SL, Czerwik S, Krol K, Singh A. Coincidences and fixed points of hybrid contractions. Tamsui Oxf. J. Math. Sci. 2008;24:401-416. \bibitem{S} Suzuki T. Generalized metric spaces do not have the compatible topology. Abstr. Appl. Anal. 2014;2014:458-98. \bibitem{S} Suzuki T. The strongly compatible topology on I-generalized metric spaces. Rev. R. Acad. Cienc. Exactas FÃs. Nat., Ser.A A Mat. 2017 \bibitem{SAK} Suzuki T, Alamri B, Kikkawa M. Only 3-generalized metric spaces have a compatible symmetric topology. Open Math. 2015;13:510-517. \bibitem{JK} Jovanovic M, Kadelburg Z, Radenovic S. Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 2010. \bibitem{SP} Singh SL, Prasad B. Some coincidence theorems and stability of iterative procedures. Comput. Math. Appl. 2008;55:2512â2520. \bibitem{KS} Kirk WA, Shahzad N. Fixed Point Theory in Distance Spaces. Berlin: Springer; 2014. \bibitem{JMW} Jachymski J, Matkowski J, SwiÄ tkowski T. Nonlinear contractions on semimetric spaces. J. Appl. Anal. 1995;1:125â134. \bibitem{M} Mitrovic ZD. On an open problem in rectangular b-metric space. J.A Anal. 2017;25:135-137. \bibitem{SM} Suzuki T. Mizoguchi-Takahashias fixed point theorem is a real generalization of Nadleras. J.A Math. Anal. Appl. 2008;340:752-755. \bibitem{N} Nadler SB., Jr. Multi-valued contraction mappings. Pac. J. Math. 1969;30:475-488. \bibitem{MT} Mizoguchi N, Takahashi W. Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 1989;141:177-188. \bibitem{AMR} Alesina A, Massa S, Roux D. Punti uniti di multifunzioni con condizioni di tipo Boyd-Wong. Boll. Unione Mat. Ital., (4) 1973;8:29-34. \bibitem{R} Reich S. Some problems and results in fixed point theory. Contemp. Math. 1983;21:179-187. \bibitem{S} Semenov PV. Fixed points of multivalued contractions. Funct. Anal. Appl. 2002;36:159-161. \end{thebibliography} \end{document}