BibTeX, biblatex and biberReferences do not show up all

Information and discussion about BiBTeX - the bibliography tool for LaTeX documents.
Post Reply
Leonardo100
Posts: 4
Joined: Thu Aug 24, 2017 6:02 pm

References do not show up all

Post by Leonardo100 »

Hello guys ;

I have a trouble with this tex file, I put all my references in the file as usual but it only shows 13-16 references only, I am using Texpad in mac os and it shows no error in generating .

Here is the minimal example with all my references . I am forced to use this document class {amsart} according to the journal. May anyone help for this problem please.

Thanks in advanced .


\documentclass[12pt, reqno]{amsart}
\usepackage[utf8]{inputenc}

\usepackage{amssymb,amsbsy,amsmath,amsfonts,amssymb,amscd}
\usepackage{amsthm}

\usepackage[mathcal]{eucal}
\usepackage{eufrak}
\usepackage[mathcal]{eucal}
\usepackage{eufrak}\date{}
\usepackage[T1]{fontenc}
\usepackage[all]{xy}
\usepackage{verbatim}
%\usepackage{amsmath}
%\usepackage{amssymb}
\usepackage{epsfig}
\usepackage{float}
\usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color}
\usepackage[bookmarksnumbered, plainpages, backref]{hyperref}
%\usepackage{geometry}
%\geometry{a4paper,top=2cm,bottom=2cm,hmargin=2cm}
%\usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color}
%\usepackage[bookmarksnumbered, plainpages, backref]{hyperref}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{conjecture}[theorem]{Conjecture}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{xca}[theorem]{Exercise}
\newtheorem{problem}[theorem]{Problem}
\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\newcommand{\N}{\mathbb N}
\newcommand{\R}{\mathbb R}
\numberwithin{equation}{section}


\begin{document}

\setcounter{page}{1}



\title{article title}

%    Information for first author
\author{aa}
\address{}
\email {}

%    Information for second author
\author{A}
\address{}
\email{}



\subjclass[2010]{46-xx, 54Hxx, 37Kxx, 44-xx, 34K30, 35R09, 35R10, 47G20, 47B38, 47G10,  34A12. }
\dedicatory{t}
\keywords{ hhh.}

%\date{Received: 2 March 2006; Revised: 25 August 2006.
%\newline \indent $^{*}$ Corresponding author}


\maketitle

\begin{thebibliography}{9}

\bibitem{K} Kreyzig, E. \textbf{ Introductory Functional Analysis with Applications}, New York: John Wiley and Sons $(1978)$.
\bibitem{AS} Aleomraninejad, S.M.A. Rezapour, Sh.. Shahzad, N. Some fixed point results on a metric space with a graph Topol. Appl. 159 (3), 659-663 (2012)
\bibitem{B} Bakhtin, I.A. The contraction mapping principle in almost metric space. Funct. Anal. [Ula yanovsk. Gos. Ped. Inst., Ula yanovsk] 30, 26-37 (1989) (Russian)

\bibitem{BD}  Beer, G. Dontchev, A.L. The weak Ekeland variational principle and fixed points. Nonlinear Anal. 102, 91-96 (2014)

\bibitem{B}  Berinde, V. Contractii Generalizate si Aplicatii, vol. 22 (Editura Cub Press, Baia Mare, 1997) (in Romanian)

\bibitem{B}  Berinde, V. Generalized contractions in quasimetric spaces, in Seminar on Fixed Point Theory, Babes-Bolyai Univ., Cluj-Napoca. Preprint 93-3 (1993), pp. 3-9

\bibitem{B}  Bojor, F. Fixed point of $\psi$ -contraction in metric spaces endowed with a graph. An. Univ. Craiova Ser. Mat. Inform. 37(4), 85-92 (2010)

\bibitem{BMV}  Bota, M. Molnar, A. Varga, C. On Ekelandas variational principle in b-metric spaces. Fixed Point Theory 12(2), 21-€“28 (2011)

\bibitem{CMVZ} Cortelazzo, G. Mian, G. Vezzi, G. Zamperoni, P. Trademark shapes description by string matching techniques. Pattern Recognit. 27(8), 1005-1018 (1994)

\bibitem{C}  Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 46(2), 263-276 (1998)

\bibitem{C}  Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostraviensis 1, 5â€-11 (1993)

\bibitem{DH}  Dontchev, A.L. Hager, W.W. An inverse mapping theorem for set-valued maps. Proc. Am. Math. Soc. 121(2), 481-489 (1994)

\bibitem{FKS}  Fagin, R. Kumar, R. Sivakumar, D. Comparing top k lists. SIAM J. Discrete Math. 17(1), 134-160 (2003)

\bibitem{FS}  Fagin, R. Stockmeyer, L. Relaxing the triangle inequality in pattern matching. Int. J. Comput. Vis. 30(3), 219-231 (1998)

\bibitem{H}  Heinonen, J. Lectures on Analysis on Metric Spaces. Universitext (Springer, New York, 2001)

\bibitem{J}  Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136(4), 1359-1373 (2008)

\bibitem{MP}  MartAnez-Maurica, J. Pellon, M.T. Non-archimedean Chebyshev centers. Nederl. Akad. Wetensch. Indag. Math. 49(4), 417-421 (1987)

\bibitem{MK}  McConnell, R. Kwok, R. Curlander, J. Kober, W. Pang, S. $\psi-S$ correlation and dynamic time warping: two methods for tracking ice floes. IEEE Trans. Geosci. Remote Sens. 29(6), 1004-1012 (1991)

\bibitem{M}  Mycielski, J. On the existence of a shortest arc between two points of a metric space. Houston J. Math. 20(3), 491-494 (1994)

\bibitem{OV}  Oltra, S. Valero, O. Banacha€™s fixed point theorem for partial metric spaces. Rend. Istid. Math. Univ. Trieste, 17-26 (2004)

\bibitem{PV}  Petalas, C. Vidalis, T. A fixed point theorem in non-archimedean vector spaces. Proc. Am. Math. Soc. 118(3), 819–821 (1993)
\bibitem{R}  Romaguera, S. On Nadleras fixed point theorem for partial metric spaces. Math. Sci. Appl. E-Notes 1, 7 pp. (2013)

\bibitem{R}  Rus, I.A. Generalized Contractions and Applications (Cluj University Press, Cluj-Napoca, 2001)

\bibitem{SK}  Samreen, M. Kamran, T. Fixed point theorems for integral G-contractions. Fixed Point Theory Appl. 2013, 11 pp. (2013)

\bibitem{W}  Wong, C.S. On a fixed point theorem of contractive type. Proc. Am. Math. Soc. 57(2), 283-284 (1976)


\bibitem{A} Afra, J.M., Fixed point type theorem in S-metric spaces, Middle-East Journal of Scientific Research, 22(6), (2014), 864.869. 

\bibitem{A}  Afra, J.M., Double contraction in S-metric spaces, International Journal of Mathematical Analysis, 9(3), (2015), 117.125. 

 \bibitem{AMR} Agarwal, R. P. Meehan, M. and Regan, D. O., Fixed Point Theory and Appli- cations, Cambridge University Press, 2004.
  
\bibitem{B}  Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 2, 133-181, (1922). 

\bibitem{MJ} Ma, Z. and Jiang, L. $C^*$-algebra valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2015 (2015) 222 
\bibitem{MJ}  Ma, Z. Jiang, L. and Sun, H. $C^*$-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2014, (2014) 206. 

\bibitem{MJX}  Ma, Z., Jiang L. and Xin Q., Fixed point theorems on operator-valued metric space, Trans. Beijing Inst. Techol., 34(10), (2014) 1078.1080. 

\bibitem{OO} O. Ozer, O. Omran, S. Common Fixed Point Theorems in $C^*$- Algebra Val- ued b-Metric Spaces AIP Conference Proceedings 1773, 050005 (2016) 

\bibitem{OO} O. Ozer, O. Omran, S. On The Generalized $C^*$- Valued Metric Spaces Related With Banach Fixed Point Theory, International Journal of Advanced and Ap- plied Sciences, Vol.4, Issue.2, (2017), 35-37. 

\bibitem{OO} O. Ozer, O. Omran, S. A Note on $C^*$- Algebra Valued G-Metric Space Related with Fixed Point Theorems, Bulletin of the Karaganda University- Mathemat- ics, (2019). (In Press) //
\bibitem{P}  Prudhvi, K., Fixed Point Theorems in S-Metric Spaces, Universal Journal of Computational Mathematics 3(2): 19-21, 2015. 
\bibitem{OLM}  Qiaoling, X., Lining J. and Ma, Z., Common fixed point theorems in $C^*$-algebra valued metric spaces, Journal of Nonlinear Science and Applications, 9, (2016) 4617.4627.
\bibitem{SSZ}  Sedghi, S. Shobe, N. and Zhou, H., A common fixed point theorem in $D^*$- metric space, Fixed Point Theory Appl. (2007), 1-13. 
\bibitem{SS}  Sedghi S., Shobe, N., A Common unique random fixed point theorems in s-Metric spaces, Journal of Prime Research in Mathematics Vol. 7(2011), 25-34 .
\bibitem{SSA}   Sedghi, S., Shobe, N., Aliouche, A., A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64, 258 -266, (2012). 
\bibitem{S}  Souayah, N., A fixed point in partial b-metric spaces, An. SIstiina. Univ. "Ovid- iusa Constanaa Ser. Mat., 24(3), 351-362, (2016). 
\bibitem{T}  Tianqing, C., Some coupled fixed point theorems in $C^*$-algebra-valued metric spaces, (2016). 
\bibitem{MS}  Z. Mustafa, B.1 Sims, A new approach to generalized metric spaces, J. Non- linear Convex Anal. 7 (2006), 289-297. 
\bibitem{AAR}   Aghajani, A., Abbas, M., Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca (2015, in press) 
\bibitem{AGD} Alber, Y.I., Guerre Delabriere, S.: Principle of weakly contractive maps in Hilbert spaces. In:NewResults in Operator Theory and its Applications, vol. 98, pp. 7–22. Birkhuser, Basel (1997) 
\bibitem{BBP} Boriceanu, M., Bota, M., Petrusel, A.: Mutivalued fractals in b-metric spaces. Cent. Eur. J. Math. 8(2), 367–377 (2010) 
\bibitem{CKRM} Choudhury, B.S., Konar, P., Rhoades, B.E., Metiya, N.: Fixed point theorems for generalized weakly contractive mappings. Nonlinear Anal. 74, 2116-2126 (2011)
\bibitem{DC} Dutta, P.N., Choudhury, B.S.: A generalisation of contraction principle in metric spaces. Fixed Point Theory Appl. 2008, 406368 (2008) 
\bibitem{D} Doric I, D.: Common fixed point for generalized $(\psi, \phi)$-weak contractions. Appl. Math. Lett. 22, 1896- 1900 (2009) 
\bibitem{KS} Kumam, P., Sintunavarat, W.: The existence of fixed point theorems for partial q-set-valued quasi- contractions in b-metric spaces and related results. Fixed Point Theory Appl. 2014, 226 (2014) 
\bibitem{NRL} Nieto, J.J., Rodiguez - Lopez, R.: Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.) 23, 2205-2212 (2007)
\bibitem{O} Olatinwo, M.O.:Some results on multi- valued weakly jungck mappings in b-metric space .Cent.Eur.J. Math 6, 610-621 (2008) 
\bibitem{P} Pacurar, M. Sequences of almost contractions and fixed points in b-metric spaces. Analele Univ. Vest Timis. Ser. Mat. Inform. XLVIII 3, 125-137 (2010) 
\bibitem{PSK} Phiangsungnoen, S., Sintunavarat, W., Kumam, P. Generalized UlamaHyer stability for fixed point equation in b-metric space via $\alpha-$ admissible. Fixed Point Theory Appl. 2014, 188 (2014) 
\bibitem{R} Rhoades, B.E.Some theorems on weakly contractive maps.NonlinearAnal.47,2683-2693(2001)
\bibitem{SVV} Samet,B.,Vetro,C.,Vetro,P. Fixed point theorems for $\alpha-\psi$-contractive type mappings. NonlinearAnal. 75, 2154-2165 (2012)
\bibitem{SPK} Sintunavarat, W., Plubtieng, S., Katchang, P. Fixed point result and applications on b-metric space endowed with an arbitrary binary relation. Fixed Point Theory Appl. 2013, 296 (2013) 
\bibitem{S} Sintunavarat, W. A new approach to $\alpha-\psi-$ contractive mappings and generalized Ulama Hyers stability, well- posedness and limit shadowing results. Carpathian J. Math. 31(3), 395-401 (2015)
\bibitem{ZS} Zhang, Q., Song, Y. Fixed point theory for generalized $\phi$-weak contractions. Appl. Math. Lett. 22(1), 75-78 (2009)
\bibitem{AAR} A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 4 (2014), 941-960.
\bibitem{ACR} M. Abbas, I. Z. Chema, A. Razani, Existence of common fixed point for b-metric rational type contraction, Filomat 30(6) (2016), 1413-1429
\bibitem{B} I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal., 30 (1989), 26-37.
\bibitem{CTA} S. Chandok, K. Tas, A.H. Ansari, Some fixed point results for TAC-type contractive mappings, J. Function Spaces, 2016.
\bibitem{C} S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform., Univ. Ostrav., 1(1993), 5-11.
\bibitem{HJR} H. Huang, J.Vujakovi Ic, S. Radenovi Ic, A note on common fixed point theorems for isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 808-815
\bibitem{HRV} H. Huang, S. Radenovi Ic, J. Vujakovi Ic, On some recent coincidence and immediate conse- quences in partially ordered b-metric spaces, Fixed Point Theory Appl., 2015:63 (2015),1-18.
\bibitem{HDKR}  N. Hussain, D. Dori Ic, Z. Kadelburg, S. Radenovi Ic, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 126 (2012).
\bibitem{HPRK} N. Hussain, V. Parvaneh, J. R. Roshan, Z. Kadelburg, Fixed points of cyclic $(\psi,\phi,L,A,B)-$ contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 256 (2013).
\bibitem{JRSV} M. Jleli, V. C . Raji Ic, B. Samet, C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl. 12 (2012), 175–192.
\bibitem{JK} M. Jovanovi Ic, Z. Kadelburg, S. Radenovi Ic, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., Article ID 978121 (2010), 15 pages.
\bibitem{KP} Z. Kadelburg,Lj. Paunovi Ic,S. Radenovi Ic, Anote on fixed pointt heorems for weaklyT - Kannan and weakly T- Chatterjea contractions in b-metric spacesa, Gulf J. Math., 3 (2015), 57-67.
\bibitem{KH} M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129.
\bibitem{MM} R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl. 19 (3), (2017), 2153-2163.
\bibitem{C} Czerwik S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena. 1998;46:263-€“276.
\bibitem{SCKS} Singh SL, Czerwik S, Krol K, Singh A. Coincidences and fixed points of hybrid contractions. Tamsui Oxf. J. Math. Sci. 2008;24:401-416. 
\bibitem{S} Suzuki T. Generalized metric spaces do not have the compatible topology. Abstr. Appl. Anal. 2014;2014:458-98.
\bibitem{S} Suzuki T. The strongly compatible topology on I-generalized metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser.A A Mat. 2017 
\bibitem{SAK} Suzuki T, Alamri B, Kikkawa M. Only 3-generalized metric spaces have a compatible symmetric topology. Open Math. 2015;13:510-517. 
\bibitem{JK} Jovanovic M, Kadelburg Z, Radenovic S. Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 2010. 
\bibitem{SP} Singh SL, Prasad B. Some coincidence theorems and stability of iterative procedures. Comput. Math. Appl. 2008;55:2512–2520. 
\bibitem{KS}  Kirk WA, Shahzad N. Fixed Point Theory in Distance Spaces. Berlin: Springer; 2014. 
\bibitem{JMW} Jachymski J, Matkowski J, Swiątkowski T. Nonlinear contractions on semimetric spaces. J. Appl. Anal. 1995;1:125–134.
\bibitem{M}  Mitrovic ZD. On an open problem in rectangular b-metric space. J.A Anal. 2017;25:135-137. 
\bibitem{SM}  Suzuki T. Mizoguchi-Takahashias fixed point theorem is a real generalization of Nadleras. J.A Math. Anal. Appl. 2008;340:752-755. 
\bibitem{N} Nadler SB., Jr. Multi-valued contraction mappings. Pac. J. Math. 1969;30:475-488. 
\bibitem{MT}  Mizoguchi N, Takahashi W. Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 1989;141:177-188.  
\bibitem{AMR} Alesina A, Massa S, Roux D. Punti uniti di multifunzioni con condizioni di tipo Boyd-Wong. Boll. Unione Mat. Ital., (4) 1973;8:29-34. 
\bibitem{R}  Reich S. Some problems and results in fixed point theory. Contemp. Math. 1983;21:179-187. 
\bibitem{S} Semenov PV. Fixed points of multivalued contractions. Funct. Anal. Appl. 2002;36:159-161. 
\end{thebibliography}
\end{document}

Recommended reading 2024:

LaTeXguide.org • LaTeX-Cookbook.net • TikZ.org

NEW: TikZ book now 40% off at Amazon.com for a short time.

User avatar
Ijon Tichy
Posts: 640
Joined: Mon Dec 24, 2018 10:12 am

References do not show up all

Post by Ijon Tichy »

First of all: You should not packages more than once. And amsart already loads amsmath and amsfonts. amsmath already loads amsby. So, from all the ams…- packages, you need only amssymb, amscd and amsthm and only, if you use them.

epsfig is a LaTeX 2.09 compatibility package, you should not use it for new documents. Use the graphicx interface instead of the epsfig interface.

Please avoid commented code in MWEs.

\setcounter{page}{1} does not make sense at the first page.

Now, let's talk about your bibliography problem:

You have several items with the same label (argument of \bibitem). But these should be unique. So you have to make the labels unique. Label duplicates result in real errors with hyperref.

And there are invisible characters in some entries that result in error messages like
Package inputenc Error: Unicode character  (U+0080) (also for U+0081, U+0085, U+0093 etc). You have to eliminate all these errors.

And there are entries with more errors using hyperref with option backref.

With hyperref all these problems are fatal. Without hyperref and after elimination of the inputenc Errors at least a PDF with all references is produced. But you cannot use \cite for duplicated labels. So you really should use unique labels.

Note: I've done only some fixes in the following example. The labels are unique now. The unicode error messages are eliminated in the entries with the "HERE" comments. But you should revise the whole references!

Code: Select all

\documentclass[12pt, reqno]{amsart}
\usepackage[utf8]{inputenc}% NOTE: Not needed with LaTeX since 2018-04-01

% NOTE: amsart already loads amsmath and amsfonts
% amsmath already loads amsbsy, it also loads amstext and amsopn.
% So you at most need to load amssymb (once!), amscd and amsthm
\usepackage{amsmath,amssymb,amscd}% NOTE: Reduced (see note above).
\usepackage{amsthm}

\usepackage[mathcal]{eucal}
%\usepackage{eufrak}% NOTE: Redundant if amsfonts are loaded (see above)
%\usepackage[mathcal]{eucal}% NOTE: Don't load packages more than once
%\usepackage{eufrak}% NOTE: Don't load packages more than once
\date{}
\usepackage[T1]{fontenc}
\usepackage[all]{xy}
\usepackage{verbatim}
%\usepackage{amsmath}% NOTE: Don't load packages more than once
%\usepackage{amssymb}% NOTE: Don't load packages more than oncve
%\usepackage{epsfig}% NOTE: You should not use this LaTeX 2.09 compatibility wrapper any longer!
\usepackage{float}
%\usepackage{amsmath, amsthm, amscd, amsfonts, amssymb}% NOTE: Don't load packages more than once
\usepackage{graphicx,color}
\usepackage[bookmarksnumbered, plainpages]{hyperref}% NOTE: backref removed because of several errors with bibitems
%\usepackage{geometry}% NOTE: Avoid commented preamble code in MWEs
%\geometry{a4paper,top=2cm,bottom=2cm,hmargin=2cm}% NOTE: Avoid commented preamble code in MWEs
%\usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color}% NOTE: Don't load packages more than once
%\usepackage[bookmarksnumbered, plainpages, backref]{hyperref}% NOTE: Don't load packages more than once
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{conjecture}[theorem]{Conjecture}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{xca}[theorem]{Exercise}
\newtheorem{problem}[theorem]{Problem}
\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\newcommand{\N}{\mathbb N}
\newcommand{\R}{\mathbb R}
\numberwithin{equation}{section}

\begin{document}

\setcounter{page}{1}% NOTE: Nonsense, because the first page is already page 1

\title{article title}

%    Information for first author
\author{aa}
\address{}
\email {}

%    Information for second author
\author{A}
\address{}
\email{}

\subjclass[2010]{46-xx, 54Hxx, 37Kxx, 44-xx, 34K30, 35R09, 35R10, 47G20, 47B38, 47G10,  34A12. }
\dedicatory{t}
\keywords{ hhh.}

%\date{Received: 2 March 2006; Revised: 25 August 2006.
%\newline \indent $^{*}$ Corresponding author}

\maketitle

\begin{thebibliography}{9}

\bibitem{K} Kreyzig, E. \textbf{ Introductory Functional Analysis with Applications}, New York: John Wiley and Sons $(1978)$.
\bibitem{AS} Aleomraninejad, S.M.A. Rezapour, Sh.. Shahzad, N. Some fixed point results on a metric space with a graph Topol. Appl. 159 (3), 659-663 (2012)
\bibitem{B} Bakhtin, I.A. The contraction mapping principle in almost metric space. Funct. Anal. [Ula yanovsk. Gos. Ped. Inst., Ula yanovsk] 30, 26-37 (1989) (Russian)

\bibitem{BD}  Beer, G. Dontchev, A.L. The weak Ekeland variational principle and fixed points. Nonlinear Anal. 102, 91-96 (2014)

\bibitem{B2}  Berinde, V. Contractii Generalizate si Aplicatii, vol. 22 (Editura Cub Press, Baia Mare, 1997) (in Romanian)

\bibitem{B3}  Berinde, V. Generalized contractions in quasimetric spaces, in Seminar on Fixed Point Theory, Babes-Bolyai Univ., Cluj-Napoca. Preprint 93-3 (1993), pp. 3-9

\bibitem{B4}  Bojor, F. Fixed point of $\psi$ -contraction in metric spaces endowed with a graph. An. Univ. Craiova Ser. Mat. Inform. 37(4), 85-92 (2010)

\bibitem{BMV}  Bota, M. Molnar, A. Varga, C. On Ekelandas variational principle in b-metric spaces. Fixed Point Theory 12(2), 21-28 (2011)% HERE!!!

\bibitem{CMVZ} Cortelazzo, G. Mian, G. Vezzi, G. Zamperoni, P. Trademark shapes description by string matching techniques. Pattern Recognit. 27(8), 1005-1018 (1994)

\bibitem{C}  Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 46(2), 263-276 (1998)

\bibitem{C2}  Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostraviensis 1, 5â-11 (1993)% HERE!!!

\bibitem{DH}  Dontchev, A.L. Hager, W.W. An inverse mapping theorem for set-valued maps. Proc. Am. Math. Soc. 121(2), 481-489 (1994)

\bibitem{FKS}  Fagin, R. Kumar, R. Sivakumar, D. Comparing top k lists. SIAM J. Discrete Math. 17(1), 134-160 (2003)

\bibitem{FS}  Fagin, R. Stockmeyer, L. Relaxing the triangle inequality in pattern matching. Int. J. Comput. Vis. 30(3), 219-231 (1998)

\bibitem{H}  Heinonen, J. Lectures on Analysis on Metric Spaces. Universitext (Springer, New York, 2001)

\bibitem{J}  Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136(4), 1359-1373 (2008)

\bibitem{MP}  MartAnez-Maurica, J. Pellon, M.T. Non-archimedean Chebyshev centers. Nederl. Akad. Wetensch. Indag. Math. 49(4), 417-421 (1987)

\bibitem{MK}  McConnell, R. Kwok, R. Curlander, J. Kober, W. Pang, S. $\psi-S$ correlation and dynamic time warping: two methods for tracking ice floes. IEEE Trans. Geosci. Remote Sens. 29(6), 1004-1012 (1991)

\bibitem{M}  Mycielski, J. On the existence of a shortest arc between two points of a metric space. Houston J. Math. 20(3), 491-494 (1994)

\bibitem{OV}  Oltra, S. Valero, O. Banachas fixed point theorem for partial metric spaces. Rend. Istid. Math. Univ. Trieste, 17-26 (2004)% HERE!!!

\bibitem{PV}  Petalas, C. Vidalis, T. A fixed point theorem in non-archimedean vector spaces. Proc. Am. Math. Soc. 118(3), 819â821 (1993)% HERE!!!
\bibitem{R}  Romaguera, S. On Nadleras fixed point theorem for partial metric spaces. Math. Sci. Appl. E-Notes 1, 7 pp. (2013)

\bibitem{R2}  Rus, I.A. Generalized Contractions and Applications (Cluj University Press, Cluj-Napoca, 2001)

\bibitem{SK}  Samreen, M. Kamran, T. Fixed point theorems for integral G-contractions. Fixed Point Theory Appl. 2013, 11 pp. (2013)

\bibitem{W}  Wong, C.S. On a fixed point theorem of contractive type. Proc. Am. Math. Soc. 57(2), 283-284 (1976)


\bibitem{A} Afra, J.M., Fixed point type theorem in S-metric spaces, Middle-East Journal of Scientific Research, 22(6), (2014), 864.869. 

\bibitem{A2}  Afra, J.M., Double contraction in S-metric spaces, International Journal of Mathematical Analysis, 9(3), (2015), 117.125. 

 \bibitem{AMR} Agarwal, R. P. Meehan, M. and Regan, D. O., Fixed Point Theory and Appli- cations, Cambridge University Press, 2004.
  
\bibitem{B5}  Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 2, 133-181, (1922). 

\bibitem{MJ} Ma, Z. and Jiang, L. $C^{*}$-algebra valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2015 (2015) 222 

\bibitem{MJ2}  Ma, Z. Jiang, L. and Sun, H. $C^{*}$-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2014, (2014) 206. 

\bibitem{MJX}  Ma, Z., Jiang L. and Xin Q., Fixed point theorems on operator-valued metric space, Trans. Beijing Inst. Techol., 34(10), (2014) 1078.1080. 

\bibitem{OO} O. Ozer, O. Omran, S. Common Fixed Point Theorems in
  $C^{*}$-Algebra Valued b-Metric Spaces AIP Converence Proceedings 1773, 050005
  (2016)

\bibitem{OO2} O. Ozer, O. Omran, S. On The Generalized $C^{*}$-Valued Metric
  Spaces Related With Banach Fixed Point Theory, International Journal of
  Advanced and Applied Siences, Vol.4, Issue.2, (2017), 35-37.
  
\bibitem{OO3} O. Ozer, O. Omran, S. A Note on $C^{*}$-Algebra Valued G-Metric
  Space Related with Fixed Point Theorems, Bulletin of the Karaganda
  University-Mathematics, (2019). (In Press)
  
\bibitem{P}  Prudhvi, K., Fixed Point Theorems in S-Metric Spaces, Universal Journal of Computational Mathematics 3(2): 19-21, 2015. 
\bibitem{OLM}  Qiaoling, X., Lining J. and Ma, Z., Common fixed point theorems in $C^*$-algebra valued metric spaces, Journal of Nonlinear Science and Applications, 9, (2016) 4617.4627.
\bibitem{SSZ}  Sedghi, S. Shobe, N. and Zhou, H., A common fixed point theorem in $D^*$- metric space, Fixed Point Theory Appl. (2007), 1-13. 
\bibitem{SS}  Sedghi S., Shobe, N., A Common unique random fixed point theorems in s-Metric spaces, Journal of Prime Research in Mathematics Vol. 7(2011), 25-34 .
\bibitem{SSA}   Sedghi, S., Shobe, N., Aliouche, A., A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64, 258 -266, (2012). 
\bibitem{S}  Souayah, N., A fixed point in partial b-metric spaces, An. SIstiina. Univ. "Ovid- iusa Constanaa Ser. Mat., 24(3), 351-362, (2016). 
\bibitem{T}  Tianqing, C., Some coupled fixed point theorems in $C^*$-algebra-valued metric spaces, (2016). 
\bibitem{MS}  Z. Mustafa, B.1 Sims, A new approach to generalized metric spaces, J. Non- linear Convex Anal. 7 (2006), 289-297. 
\bibitem{AAR}   Aghajani, A., Abbas, M., Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca (2015, in press) 
\bibitem{AGD} Alber, Y.I., Guerre Delabriere, S.: Principle of weakly
  contractive maps in Hilbert spaces. In:NewResults in Operator Theory and its
  Applications, vol. 98, pp. 7â22. Birkhuser, Basel (1997) % HERE!!!
\bibitem{BBP} Boriceanu, M., Bota, M., Petrusel, A.: Mutivalued fractals in
  b-metric spaces. Cent. Eur. J. Math. 8(2), 367â377 (2010) % HERE!!!
\bibitem{CKRM} Choudhury, B.S., Konar, P., Rhoades, B.E., Metiya, N.: Fixed point theorems for generalized weakly contractive mappings. Nonlinear Anal. 74, 2116-2126 (2011)
\bibitem{DC} Dutta, P.N., Choudhury, B.S.: A generalisation of contraction principle in metric spaces. Fixed Point Theory Appl. 2008, 406368 (2008) 
\bibitem{D} Doric I, D.: Common fixed point for generalized $(\psi, \phi)$-weak contractions. Appl. Math. Lett. 22, 1896- 1900 (2009) 
\bibitem{KS} Kumam, P., Sintunavarat, W.: The existence of fixed point theorems for partial q-set-valued quasi- contractions in b-metric spaces and related results. Fixed Point Theory Appl. 2014, 226 (2014) 
\bibitem{NRL} Nieto, J.J., Rodiguez - Lopez, R.: Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.) 23, 2205-2212 (2007)
\bibitem{O} Olatinwo, M.O.:Some results on multi- valued weakly jungck mappings in b-metric space .Cent.Eur.J. Math 6, 610-621 (2008) 
\bibitem{P2} Pacurar, M. Sequences of almost contractions and fixed points in b-metric spaces. Analele Univ. Vest Timis. Ser. Mat. Inform. XLVIII 3, 125-137 (2010) 
\bibitem{PSK} Phiangsungnoen, S., Sintunavarat, W., Kumam, P. Generalized UlamaHyer stability for fixed point equation in b-metric space via $\alpha-$ admissible. Fixed Point Theory Appl. 2014, 188 (2014) 
\bibitem{R3} Rhoades, B.E.Some theorems on weakly contractive maps.NonlinearAnal.47,2683-2693(2001)
\bibitem{SVV} Samet,B.,Vetro,C.,Vetro,P. Fixed point theorems for $\alpha-\psi$-contractive type mappings. NonlinearAnal. 75, 2154-2165 (2012)
\bibitem{SPK} Sintunavarat, W., Plubtieng, S., Katchang, P. Fixed point result and applications on b-metric space endowed with an arbitrary binary relation. Fixed Point Theory Appl. 2013, 296 (2013) 
\bibitem{S2} Sintunavarat, W. A new approach to $\alpha-\psi-$ contractive mappings and generalized Ulama Hyers stability, well- posedness and limit shadowing results. Carpathian J. Math. 31(3), 395-401 (2015)
\bibitem{ZS} Zhang, Q., Song, Y. Fixed point theory for generalized $\phi$-weak contractions. Appl. Math. Lett. 22(1), 75-78 (2009)
\bibitem{AAR2} A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 4 (2014), 941-960.
\bibitem{ACR} M. Abbas, I. Z. Chema, A. Razani, Existence of common fixed point for b-metric rational type contraction, Filomat 30(6) (2016), 1413-1429
\bibitem{B6} I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal., 30 (1989), 26-37.
\bibitem{CTA} S. Chandok, K. Tas, A.H. Ansari, Some fixed point results for TAC-type contractive mappings, J. Function Spaces, 2016.
\bibitem{C3} S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform., Univ. Ostrav., 1(1993), 5-11.
\bibitem{HJR} H. Huang, J.Vujakovi Ic, S. Radenovi Ic, A note on common fixed point theorems for isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 808-815
\bibitem{HRV} H. Huang, S. Radenovi Ic, J. Vujakovi Ic, On some recent coincidence and immediate conse- quences in partially ordered b-metric spaces, Fixed Point Theory Appl., 2015:63 (2015),1-18.
\bibitem{HDKR}  N. Hussain, D. Dori Ic, Z. Kadelburg, S. Radenovi Ic, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 126 (2012).
\bibitem{HPRK} N. Hussain, V. Parvaneh, J. R. Roshan, Z. Kadelburg, Fixed points of cyclic $(\psi,\phi,L,A,B)-$ contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 256 (2013).
\bibitem{JRSV} M. Jleli, V. C . Raji Ic, B. Samet, C. Vetro, Fixed point
  theorems on ordered metric spaces and applications to nonlinear elastic beam
  equations, J. Fixed Point Theory Appl. 12 (2012), 175â192.% HERE!!!
\bibitem{JK} M. Jovanovi Ic, Z. Kadelburg, S. Radenovi Ic, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., Article ID 978121 (2010), 15 pages.
\bibitem{KP} Z. Kadelburg,Lj. Paunovi Ic,S. Radenovi Ic, Anote on fixed
  pointt heorems for weaklyT - Kannan and weakly T- Chatterjea contractions in
  b-metric spacesa, Gulf J. Math., 3 (2015), 57-67.% HERE!!!
\bibitem{KH} M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129.
\bibitem{MM} R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl. 19 (3), (2017), 2153-2163.
\bibitem{C4} Czerwik S. Nonlinear set-valued contraction mappings in b-metric
  spaces. Atti Semin. Mat. Fis. Univ. Modena. 1998;46:263-276.% HERE!!!
\bibitem{SCKS} Singh SL, Czerwik S, Krol K, Singh A. Coincidences and fixed points of hybrid contractions. Tamsui Oxf. J. Math. Sci. 2008;24:401-416. 
\bibitem{S3} Suzuki T. Generalized metric spaces do not have the compatible topology. Abstr. Appl. Anal. 2014;2014:458-98.
\bibitem{S4} Suzuki T. The strongly compatible topology on I-generalized metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser.A A Mat. 2017 
\bibitem{SAK} Suzuki T, Alamri B, Kikkawa M. Only 3-generalized metric spaces have a compatible symmetric topology. Open Math. 2015;13:510-517. 
\bibitem{JK2} Jovanovic M, Kadelburg Z, Radenovic S. Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 2010. 
\bibitem{SP} Singh SL, Prasad B. Some coincidence theorems and stability of
  iterative procedures. Comput. Math. Appl. 2008;55:2512â2520.% HERE!!!
\bibitem{KS2}  Kirk WA, Shahzad N. Fixed Point Theory in Distance Spaces. Berlin: Springer; 2014. 
\bibitem{JMW} Jachymski J, Matkowski J, SwiÄtkowski T. Nonlinear contractions
  on semimetric spaces. J. Appl. Anal. 1995;1:125â134.% HERE!!!
\bibitem{M2}  Mitrovic ZD. On an open problem in rectangular b-metric space. J.A Anal. 2017;25:135-137. 
\bibitem{SM}  Suzuki T. Mizoguchi-Takahashias fixed point theorem is a real generalization of Nadleras. J.A Math. Anal. Appl. 2008;340:752-755. 
\bibitem{N} Nadler SB., Jr. Multi-valued contraction mappings. Pac. J. Math. 1969;30:475-488. 
\bibitem{MT}  Mizoguchi N, Takahashi W. Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 1989;141:177-188.  
\bibitem{AMR2} Alesina A, Massa S, Roux D. Punti uniti di multifunzioni con condizioni di tipo Boyd-Wong. Boll. Unione Mat. Ital., (4) 1973;8:29-34. 
\bibitem{R4}  Reich S. Some problems and results in fixed point theory. Contemp. Math. 1983;21:179-187. 
\bibitem{S5} Semenov PV. Fixed points of multivalued contractions. Funct. Anal. Appl. 2002;36:159-161. 
\end{thebibliography}
\end{document}
BTW: I would recommend to use biblatex and biber or at least BibTeX to make the references.
Sorry, but I can no longer participate here as the administrator is trampling on my wishes on one of his other platforms. :cry:
Leonardo100
Posts: 4
Joined: Thu Aug 24, 2017 6:02 pm

References do not show up all

Post by Leonardo100 »

Thanks in advanced , I really appreciate your notes, I will work on what you told me to do .
Post Reply