Here is the compiled tex code - I added a pdf below created in Word that has the formatting that I'd to implement in tex (Chapter 1.pdf).
Code: Select all
\documentclass[12pt,fleqn, letterpaper]{report}
\usepackage{sectsty}
\usepackage{lipsum}
\chapterfont{\centering}
\sectionfont{\fontsize{12}{15}\selectfont \centering \mdseries}
\chapterfont{\fontsize{12}{15}\selectfont \centering \mdseries}
\subsectionfont{\fontsize{12}{15}\selectfont \centering \mdseries}
\usepackage{mathptmx}
\usepackage[nodisplayskipstretch]{setspace}
\usepackage[left=.88in,right=.88in,top=.88in,bottom=.88in,includefoot]{geometry}
\doublespacing
\begin{document}
\chapter{Dimension Reduction in Symmetric Spaces} \label{chpt:Dim_Red} \vspace{-15pt}
In this chapter PGA procedures and their computations for data in three types of manifolds, the space of positive definite matrices, the special orthogonal group and the unit spheres, are specified and analyzed.
\section{The Space of Positive Definite Matrices, $P(n)$} \label{sec:pos_def}
\subsection{Geometry of $P(n)$} \label{ssec:posdef_geo}
A real $n \times n$ symmetric matrix, $p$, is \textit{positive definite} if and only if for each $n \times 1$ real column vector $x \neq 0$ we have $x^\top p x> 0$. The set of all positive definite matrices is denoted here by $P(n)$. $P(n)$ can also be characterized as the set of all real $n \times n$ symmetric matrices with all eigenvalues strictly greater than zero.
\end{document}