- * Find the number of elements in a list that occurs most often,
* Count the number of elements of each size in a list,
* Calculate quartiles of data set,
* Multiple \if condition using etoolbox.
Code: Select all
\documentclass[serif, 9pt]{beamer}
\usepackage{etex}
\usepackage{lmodern}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{pstricks-add}
\usepackage{etoolbox}
\usepackage[locale = DE]{siunitx}
\psset{dimen = m}
\def\typetal{0}
\def\typetalMaks{0}
\def\zz\ignorespaces#1{%
\expandafter\xdef\csname zz#1\endcsname{%
\expandafter\ifx\csname zz#1\endcsname\relax
1%
\else
\the\numexpr\csname zz#1\endcsname+1\relax
\fi}%.
\ifnum\typetalMaks < \csname zz#1\endcsname
\gdef\typetal{#1}%
\global\expandafter\let\expandafter\typetalMaks\csname zz#1\endcsname
\fi
#1}
\newcommand*\hyppighed[1]{\csname zz#1\endcsname}
\ExplSyntaxOn
\cs_new_eq:NN \calc \fp_eval:n
\ExplSyntaxOff
% The following are self-made macros to perform certain calculations
% but they are not very elegant, I think.
\newcommand*\dataliste{
\elevA,
\elevB,
\elevC,
\elevD,
\elevE
\elevF,
\elevG,
\elevH,
\elevI,
\elevJ,
\elevK,
\elevL,
\elevM,
\elevN,
\elevO,
\elevP,
\elevQ,
\elevR,
\elevS,
\elevT,
\elevU,
\elevV,
\elevW,
\elevX,
\elevY,
\elevZ,
\elevAa,
\elevAb,
\elevAc,
\elevAd,
\elevAe,
\elevAf,
\elevAg,
\elevAh,
\elevAi,
\elevAj,
\elevAk,
\elevAl,
\elevAm,
\elevAn,
\elevAo,
\elevAp
}
\newcommand*\minimum{\calc{min(\dataliste)}}
\newcommand*\maksimum{\calc{max(\dataliste)}}
\newcommand*\varians{\calc{\maksimum-\minimum}}
\newcommand*\hyppighedKumA{\hyppighed{\minimum}}
\newcommand*\hyppighedKumB{\calc{\hyppighedKumA+\hyppighed{1}}}
\newcommand*\hyppighedKumC{\calc{\hyppighedKumB+\hyppighed{2}}}
\newcommand*\hyppighedKumD{\calc{\hyppighedKumC+\hyppighed{3}}}
\newcommand*\hyppighedKumE{\calc{\hyppighedKumD+\hyppighed{4}}}
\newcommand*\hyppighedKumF{\calc{\hyppighedKumE+\hyppighed{5}}}
\newcommand*\hyppighedKumG{\calc{\hyppighedKumF+\hyppighed{6}}}
\newcommand*\hyppighedKumH{\calc{\hyppighedKumG+\hyppighed{\maksimum}}}
\newcommand*\hyppighedTotal{\hyppighedKumH}
\newcommand*\frekvens[1]{\calc{round(#1/\hyppighedTotal*100,1)}}
\newcommand*\frekvensKumA{\frekvens{\hyppighed{\minimum}}}
\newcommand*\frekvensKumB{\calc{\frekvensKumA+\frekvens{\hyppighed{1}}}}
\newcommand*\frekvensKumC{\calc{\frekvensKumB+\frekvens{\hyppighed{2}}}}
\newcommand*\frekvensKumD{\calc{\frekvensKumC+\frekvens{\hyppighed{3}}}}
\newcommand*\frekvensKumE{\calc{\frekvensKumD+\frekvens{\hyppighed{4}}}}
\newcommand*\frekvensKumF{\calc{\frekvensKumE+\frekvens{\hyppighed{5}}}}
\newcommand*\frekvensKumG{\calc{\frekvensKumF+\frekvens{\hyppighed{6}}}}
\newcommand*\frekvensKumH{\calc{\frekvensKumG+\frekvens{\hyppighed{\maksimum}}}}
\newcommand*\frekvensTotal{\frekvensKumH}
\newcommand*\middel[1]{\calc{#1*\hyppighed{#1}}}
\newcommand*\middelTotal{%
\calc{
\middel{\minimum}
+\middel{1}
+\middel{2}
+\middel{3}
+\middel{4}
+\middel{5}
+\middel{6}
+\middel{\maksimum}
}
}
\newcommand*\gennemsnit{\calc{\middelTotal/\hyppighedTotal}}
\newcommand*\frekvensMaks{
max(
\frekvens{\hyppighed{\minimum}},
\frekvens{\hyppighed{1}},
\frekvens{\hyppighed{2}},
\frekvens{\hyppighed{3}},
\frekvens{\hyppighed{4}},
\frekvens{\hyppighed{4}},
\frekvens{\hyppighed{6}},
\frekvens{\hyppighed{\maksimum}}
)
}
% Plots.
\def\hyp(#1)#2{%
\psset{
linewidth = 1.5pt,
linecolor = blue!70
}
\psline(\calc{#1+1},0)(\calc{#1+1},#2)
\psline(\calc{#1+0.8},#2)(\calc{#1+1.2},#2)%
}
\def\frek(#1)#2{%
\psset{
linewidth = 1.5pt,
linecolor = blue!70
}
\psline(\calc{#1+1},0)(\calc{#1+1},\calc{#2/\hyppighedTotal*100})
\psline(\calc{#1+0.8},\calc{#2/\hyppighedTotal*100})%
(\calc{#1+1.2},\calc{#2/\hyppighedTotal*100})%
}
\def\hypKum(#1)#2#3{%
\psset{
linecolor = blue!70
}
\psline[
linewidth = 1.5pt,
](\calc{#1+1},#2)(\calc{#1+1},#3)(\calc{#1+2+0.025pt},#3)
\psline[
linestyle = dashed,
linewidth = 0.75pt
](\calc{#1+2},#3)(\calc{#1+2},0)%
}
\def\frekKum(#1)#2#3{%
\psset{
linecolor = blue!70
}
\psline[
linewidth = 1.5pt
](\calc{#1+1},\calc{#2/\hyppighedTotal*100})%
(\calc{#1+1},\calc{#3/\hyppighedTotal*100})%
(\calc{#1+2+0.025pt},\calc{#3/\hyppighedTotal*100})%
\psline[
linestyle = dashed,
linewidth = 0.75pt
](\calc{#1+2},\calc{#3/\hyppighedTotal*100})(\calc{#1+2},0)%
}
\def\kvartil#1#2{%
\uput[180](0,#2){\tiny $#2$}
\psline(0,#2)(\calc{#1+1},#2)%
}
% Box plot.
\def\boksplot[#1,#2]#3#4#5#6#7{%
\begin{pspicture}(\calc{#3-0.5},-0.5)(\calc{#7+2.62},\calc{1.2+#2})
\psaxes[
yAxis = false
]{->}(0,0)(\calc{#3-0.5},0)(\calc{#7+0.5},0)[Frav{\ae}r~(dage),0][,90]
\psxTick(0){0}
{\tiny
\psset{
labelsep = 2pt,
fillstyle = solid,
dotsize = 1pt 2
}
\uput[90](#4,\calc{1+#2}){#4}
\psframe[fillcolor = blue!60](#4,\calc{1-#2})(#5,\calc{1+#2})
\uput[90](#5,\calc{1+#2}){#5}
\psframe[fillcolor = red!60](#5,\calc{1-#2})(#6,\calc{1+#2})
\uput[90](#6,\calc{1+#2}){#6}
\psdot(#3,1)
\ifnum #3 = #4
%
\else
\psline(#3,1)(#4,1)
\psline(#3,\calc{1-#1})(#3,\calc{1+#1})
\uput[90](#3,\calc{1+#1}){#3}
\fi
\psdot(#7,1)
\ifnum #7 = #6
%
\else
\psline(#6,1)(#7,1)
\psline(#7,\calc{1-#1})(#7,\calc{1+#1})
\uput[90](#7,\calc{1+#1}){#7}
\fi}
\end{pspicture}%
}
\begin{document}
% data
\def\elevA{6}
\def\elevB{0}
\def\elevC{0}
\def\elevD{3}
\def\elevE{0}
\def\elevF{2}
\def\elevG{1}
\def\elevH{1}
\def\elevI{1}
\def\elevJ{5}
\def\elevK{0}
\def\elevL{3}
\def\elevM{7}
\def\elevN{3}
\def\elevO{1}
\def\elevP{1}
\def\elevQ{0}
\def\elevR{0}
\def\elevS{0}
\def\elevT{2}
\def\elevU{1}
\def\elevV{2}
\def\elevW{0}
\def\elevX{2}
\def\elevY{1}
\def\elevZ{1}
\def\elevAa{4}
\def\elevAb{6}
\def\elevAc{1}
\def\elevAd{1}
\def\elevAe{6}
\def\elevAf{2}
\def\elevAg{0}
\def\elevAh{3}
\def\elevAi{2}
\def\elevAj{1}
\def\elevAk{0}
\def\elevAl{0}
\def\elevAm{0}
\def\elevAn{0}
\def\elevAo{0}
\def\elevAp{4}
% quartiles
\def\kvtPctA{25}
\def\kvtPctB{50}
\def\kvtPctC{75}
% precision
\def\praecision{0}
\begin{frame}{\visible<1->{Exercise}}
\visible<1->{%
\begin{table}
\begin{tabular}{*{14}{>\zz c}}
\toprule
\elevA & \elevB & \elevC & \elevD & \elevE & \elevF & \elevG &
\elevH & \elevI & \elevJ & \elevK & \elevL & \elevM & \elevN \\[0.5ex]
\elevO & \elevP & \elevQ & \elevR & \elevS & \elevT & \elevU &
\elevV & \elevW & \elevX & \elevY & \elevZ & \elevAa & \elevAb \\[0.5ex]
\elevAc & \elevAd & \elevAe & \elevAf & \elevAg & \elevAh & \elevAi &
\elevAj & \elevAk & \elevAl & \elevAm & \elevAn & \elevAo & \elevAp \\
\bottomrule
\end{tabular}
\end{table}}
\end{frame}
\begin{frame}{\visible<1->{Exercise}}
\visible<1->{%
\ifnum \praecision = 0
\begin{table}
\sisetup{
round-mode = places,
round-precision = \praecision
}
\begin{tabular}{
c
S[table-format = 2]
S[table-format = 3]
S[table-format = 2]
S[table-format = 3]
S[table-format = 2]
}
\toprule
$x$
& {$h(x)$}
& {$f(x)$}
& {$H(x)$}
& {$F(x)$}
& {$x \cdot h(x)$} \\[0.5ex]
\textup{dage}
& {---}
& {\si{\percent}}
& {---}
& {\si{\percent}}
& {\textup{dage}} \\
\midrule
\minimum
& \hyppighed{\minimum}
& \frekvens{\hyppighed{\minimum}}
& \hyppighedKumA
& \frekvensKumA
& \middel{\minimum} \\
1
& \hyppighed{1}
& \frekvens{\hyppighed{1}}
& \hyppighedKumB
& \frekvensKumB
& \middel{1} \\
2
& \hyppighed{2}
& \frekvens{\hyppighed{2}}
& \hyppighedKumC
& \frekvensKumC
& \middel{2} \\
3
& \hyppighed{3}
& \frekvens{\hyppighed{3}}
& \hyppighedKumD
& \frekvensKumD
& \middel{3} \\
4
& \hyppighed{4}
& \frekvens{\hyppighed{4}}
& \hyppighedKumE
& \frekvensKumE
& \middel{4} \\
5
& \hyppighed{5}
& \frekvens{\hyppighed{5}}
& \hyppighedKumF
& \frekvensKumF
& \middel{5} \\
6
& \hyppighed{6}
& \frekvens{\hyppighed{6}}
& \hyppighedKumG
& \frekvensKumG
& \middel{6} \\
\maksimum
& \hyppighed{\maksimum}
& \frekvens{\hyppighed{\maksimum}}
& \hyppighedKumH
& \frekvensKumH
& \middel{\maksimum} \\
\midrule
& \hyppighedTotal
& \frekvensTotal
&
&
& \middelTotal \\
\bottomrule
\end{tabular}
\end{table}
\else
\begin{table}
\sisetup{
round-mode = places,
round-precision = \praecision
}
\begin{tabular}{
c
S[table-format = 2]
S[table-format = 3.\praecision, round-integer-to-decimal]
S[table-format = 2]
S[table-format = 3.\praecision, round-integer-to-decimal]
S[table-format = 2]
}
\toprule
$x$
& {$h(x)$}
& {$f(x)$}
& {$H(x)$}
& {$F(x)$}
& {$x \cdot h(x)$} \\[0.5ex]
\textup{dage}
& {---}
& {\si{\percent}}
& {---}
& {\si{\percent}}
& {\textup{dage}} \\
\midrule
\minimum
& \hyppighed{\minimum}
& \frekvens{\hyppighed{\minimum}}
& \hyppighedKumA
& \frekvensKumA
& \middel{\minimum} \\
1
& \hyppighed{1}
& \frekvens{\hyppighed{1}}
& \hyppighedKumB
& \frekvensKumB
& \middel{1} \\
2
& \hyppighed{2}
& \frekvens{\hyppighed{2}}
& \hyppighedKumC
& \frekvensKumC
& \middel{2} \\
3
& \hyppighed{3}
& \frekvens{\hyppighed{3}}
& \hyppighedKumD
& \frekvensKumD
& \middel{3} \\
4
& \hyppighed{4}
& \frekvens{\hyppighed{4}}
& \hyppighedKumE
& \frekvensKumE
& \middel{4} \\
5
& \hyppighed{5}
& \frekvens{\hyppighed{5}}
& \hyppighedKumF
& \frekvensKumF
& \middel{5} \\
6
& \hyppighed{6}
& \frekvens{\hyppighed{6}}
& \hyppighedKumG
& \frekvensKumG
& \middel{6} \\
\maksimum
& \hyppighed{\maksimum}
& \frekvens{\hyppighed{\maksimum}}
& \hyppighedKumH
& \frekvensKumH
& \middel{\maksimum} \\
\midrule
& \hyppighedTotal
& \frekvensTotal
&
&
& \middelTotal \\
\bottomrule
\end{tabular}
\end{table}
\fi
\ifdim \frekvensTotal pt = 100 pt
%
\else
\textsf{Note:} Something.
\fi}
\end{frame}
\begin{frame}{\visible<1->{Exercise}}
\visible<1->{%
\begin{figure}
\psset{yunit = 0.3}
\begin{pspicture}(-0.6,-1.6)(\calc{\maksimum+3},\calc{\typetalMaks+2.5})
\psaxes[Ox = -1]{->}%
(0,0)(-0.18,-0.6)(\calc{\maksimum+1.7},\calc{\typetalMaks+1})%
[$x$~(dage),0][$h(x)$,90]
\psyTick(0){0}
\multido{\i = \minimum+1}{\calc{\varians+1}}{\hyp(\i){\hyppighed{\i}}}
\end{pspicture}
\end{figure}}
\end{frame}
\begin{frame}{\visible<1->{Exercise}}
\visible<1->{%
\begin{figure}
\psset{yunit = 0.12}
\begin{pspicture}(-0.6,-4)(\calc{\maksimum+3.05},\calc{\frekvensMaks+9.9})
\psaxes[dy = 5, Dy = 5, Ox = -1]{->}%
(0,0)(-0.3,-2)(\calc{\maksimum+1.7},\calc{\frekvensMaks+6})%
[$x$~(dage),0][$f(x)$~(\si{\percent}),90]
\psyTick(0){0}
\multido{\i = \minimum+1}{\calc{\varians+1}}{\frek(\i){\hyppighed{\i}}}
\end{pspicture}
\end{figure}}
\end{frame}
\begin{frame}{\visible<1->{Exercise}}
\visible<1->{%
\begin{figure}
\psset{yunit = 0.1}
\begin{pspicture}(-0.6,-5)(\calc{\maksimum+3},\calc{\hyppighedTotal+11.6})
\psaxes[dy = 5, Dy = 5, Ox = -1]{->}%
(0,0)(-0.2,-2.5)(\calc{\maksimum+1.7},\calc{\hyppighedTotal+7})%
[$x$~(dage),0][$H(x)$,90]
\psyTick(0){0}
\hypKum(\minimum){0}{\hyppighedKumA}
\hypKum(1){\hyppighedKumA}{\hyppighedKumB}
\hypKum(2){\hyppighedKumB}{\hyppighedKumC}
\hypKum(3){\hyppighedKumC}{\hyppighedKumD}
\hypKum(4){\hyppighedKumD}{\hyppighedKumE}
\hypKum(5){\hyppighedKumE}{\hyppighedKumF}
\hypKum(6){\hyppighedKumF}{\hyppighedKumG}
\psline[linecolor = blue!70,linewidth = 1.5pt]{->}%
(\calc{\maksimum+1},\hyppighedKumG)%
(\calc{\maksimum+1},\hyppighedKumH)%
(\calc{\maksimum+1.7},\hyppighedKumH)
\end{pspicture}
\end{figure}}
\end{frame}
\begin{frame}{\visible<1->{Exercise}}
\visible<1->{%
\begin{figure}
\psset{yunit = 0.045}
\begin{pspicture}(-0.75,-11.2)(\calc{\maksimum+3},119)
\psaxes[dy = 10, Dy = 10, Ox = -1]{->}%
(0,0)(-0.2,\calc{-40/9})(\calc{\maksimum+1.7},108)%
[$x$~(dage),0][$F(x)$~(\si{\percent}),90]
\psyTick(0){0}
\frekKum(\minimum){0}{\hyppighedKumA}
\frekKum(1){\hyppighedKumA}{\hyppighedKumB}
\frekKum(2){\hyppighedKumB}{\hyppighedKumC}
\frekKum(3){\hyppighedKumC}{\hyppighedKumD}
\frekKum(4){\hyppighedKumD}{\hyppighedKumE}
\frekKum(5){\hyppighedKumE}{\hyppighedKumF}
\frekKum(6){\hyppighedKumF}{\hyppighedKumG}
\psline[
linecolor = blue!70,
linewidth = 1.5pt
]{->}(\calc{\maksimum+1},\calc{\hyppighedKumG/\hyppighedTotal*100})%
(\calc{\maksimum+1},\calc{\hyppighedKumH/\hyppighedTotal*100})%
(\calc{\maksimum+1.7},\calc{\hyppighedKumH/\hyppighedTotal*100})
\end{pspicture}
\end{figure}}
\end{frame}
% Quartiles.
\ifdimcomp{\frekvensKumA pt}>{\kvtPctA pt}{
\def\kvartilA{\minimum}}{}
\ifdimcomp{\frekvensKumA pt}<{\kvtPctA pt}{
\ifdimcomp{\frekvensKumB pt}>{\kvtPctA pt}{\def\kvartilA{1}}{}}{}
\ifdimcomp{\frekvensKumB pt}<{\kvtPctA pt}{
\ifdimcomp{\frekvensKumC pt}>{\kvtPctA pt}{\def\kvartilA{2}}{}}{}
\ifdimcomp{\frekvensKumC pt}<{\kvtPctA pt}{
\ifdimcomp{\frekvensKumD pt}>{\kvtPctA pt}{\def\kvartilA{3}}{}}{}
\ifdimcomp{\frekvensKumD pt}<{\kvtPctA pt}{
\ifdimcomp{\frekvensKumE pt}>{\kvtPctA pt}{\def\kvartilA{4}}{}}{}
\ifdimcomp{\frekvensKumE pt}<{\kvtPctA pt}{
\ifdimcomp{\frekvensKumF pt}>{\kvtPctA pt}{\def\kvartilA{5}}{}}{}
\ifdimcomp{\frekvensKumF pt}<{\kvtPctA pt}{
\ifdimcomp{\frekvensKumG pt}>{\kvtPctA pt}{\def\kvartilA{6}}{}}{}
\ifdimcomp{\frekvensKumG pt}<{\kvtPctA pt}{
\ifdimcomp{\frekvensKumH pt}>{\kvtPctA pt}{\def\kvartilA{\maksimum}}{}}{}
\ifdimcomp{\frekvensKumA pt}>{\kvtPctB pt}{
\def\kvartilB{\minimum}}{}
\ifdimcomp{\frekvensKumA pt}<{\kvtPctB pt}{
\ifdimcomp{\frekvensKumB pt}>{\kvtPctB pt}{\def\kvartilB{1}}{}}{}
\ifdimcomp{\frekvensKumB pt}<{\kvtPctB pt}{
\ifdimcomp{\frekvensKumC pt}>{\kvtPctB pt}{\def\kvartilB{2}}{}}{}
\ifdimcomp{\frekvensKumC pt}<{\kvtPctB pt}{
\ifdimcomp{\frekvensKumD pt}>{\kvtPctB pt}{\def\kvartilB{3}}{}}{}
\ifdimcomp{\frekvensKumD pt}<{\kvtPctB pt}{
\ifdimcomp{\frekvensKumE pt}>{\kvtPctB pt}{\def\kvartilB{4}}{}}{}
\ifdimcomp{\frekvensKumE pt}<{\kvtPctB pt}{
\ifdimcomp{\frekvensKumF pt}>{\kvtPctB pt}{\def\kvartilB{5}}{}}{}
\ifdimcomp{\frekvensKumF pt}<{\kvtPctB pt}{
\ifdimcomp{\frekvensKumG pt}>{\kvtPctB pt}{\def\kvartilB{6}}{}}{}
\ifdimcomp{\frekvensKumG pt}<{\kvtPctB pt}{
\ifdimcomp{\frekvensKumH pt}>{\kvtPctB pt}{\def\kvartilB{\maksimum}}{}}{}
\ifdimcomp{\frekvensKumA pt}>{\kvtPctC pt}{
\def\kvartilC{\minimum}}{}
\ifdimcomp{\frekvensKumA pt}<{\kvtPctC pt}{
\ifdimcomp{\frekvensKumB pt}>{\kvtPctC pt}{\def\kvartilC{1}}{}}{}
\ifdimcomp{\frekvensKumB pt}<{\kvtPctC pt}{
\ifdimcomp{\frekvensKumC pt}>{\kvtPctC pt}{\def\kvartilC{2}}{}}{}
\ifdimcomp{\frekvensKumC pt}<{\kvtPctC pt}{
\ifdimcomp{\frekvensKumD pt}>{\kvtPctC pt}{\def\kvartilC{3}}{}}{}
\ifdimcomp{\frekvensKumD pt}<{\kvtPctC pt}{
\ifdimcomp{\frekvensKumE pt}>{\kvtPctC pt}{\def\kvartilC{4}}{}}{}
\ifdimcomp{\frekvensKumE pt}<{\kvtPctC pt}{
\ifdimcomp{\frekvensKumF pt}>{\kvtPctC pt}{\def\kvartilC{5}}{}}{}
\ifdimcomp{\frekvensKumF pt}<{\kvtPctC pt}{
\ifdimcomp{\frekvensKumG pt}>{\kvtPctC pt}{\def\kvartilC{6}}{}}{}
\ifdimcomp{\frekvensKumG pt}<{\kvtPctC pt}{
\ifdimcomp{\frekvensKumH pt}>{\kvtPctC pt}{\def\kvartilC{\maksimum}}{}}{}
\ifdimcomp{\frekvensKumA pt}>{50 pt}{
\def\median{\minimum}}{}
\ifdimcomp{\frekvensKumA pt}<{50 pt}{
\ifdimcomp{\frekvensKumB pt}>{50 pt}{\def\median{1}}{}}{}
\ifdimcomp{\frekvensKumB pt}<{50 pt}{
\ifdimcomp{\frekvensKumC pt}>{50 pt}{\def\median{2}}{}}{}
\ifdimcomp{\frekvensKumC pt}<{50 pt}{
\ifdimcomp{\frekvensKumD pt}>{50 pt}{\def\median{3}}{}}{}
\ifdimcomp{\frekvensKumD pt}<{50 pt}{
\ifdimcomp{\frekvensKumE pt}>{50 pt}{\def\median{4}}{}}{}
\ifdimcomp{\frekvensKumE pt}<{50 pt}{
\ifdimcomp{\frekvensKumF pt}>{50 pt}{\def\median{5}}{}}{}
\ifdimcomp{\frekvensKumF pt}<{50 pt}{
\ifdimcomp{\frekvensKumG pt}>{50 pt}{\def\median{6}}{}}{}
\ifdimcomp{\frekvensKumG pt}<{50 pt}{
\ifdimcomp{\frekvensKumH pt}>{50 pt}{\def\median{\maksimum}}{}}{}
\begin{frame}{\visible<1->{Exercise}}
\visible<1->{%
\begin{figure}
\psset{yunit = 0.045}
\begin{pspicture}(-0.75,-11.2)(\calc{\maksimum+3},119)
\psaxes[dy = 10, Dy = 10, Ox = -1, yticksize = 0 5pt, ylabelsep = 10pt]{->}%
(0,0)(-0.2,\calc{-40/9})(\calc{\maksimum+1.7},108)%
[$x$~(dage),0][,90]
\uput[90](0,108){$F(x)$~(\si{\percent})}
\rput(-0.435,0){$0$}
\frekKum(\minimum){0}{\hyppighedKumA}
\frekKum(1){\hyppighedKumA}{\hyppighedKumB}
\frekKum(2){\hyppighedKumB}{\hyppighedKumC}
\frekKum(3){\hyppighedKumC}{\hyppighedKumD}
\frekKum(4){\hyppighedKumD}{\hyppighedKumE}
\frekKum(5){\hyppighedKumE}{\hyppighedKumF}
\frekKum(6){\hyppighedKumF}{\hyppighedKumG}
\psline[linecolor = blue!70, linewidth = 1.5pt]{->}%
(\calc{\maksimum+1},\calc{\hyppighedKumG/\hyppighedTotal*100})%
(\calc{\maksimum+1},\calc{\hyppighedKumH/\hyppighedTotal*100})%
(\calc{\maksimum+1.7},\calc{\hyppighedKumH/\hyppighedTotal*100})
\psset{
arrows = ->,
linewidth = 0.75pt,
labelsep = 2pt
}
\psline(0,50)(\calc{\median+1},50)
\kvartil{\kvartilA}{\kvtPctA}
\kvartil{\kvartilB}{\kvtPctB}
\kvartil{\kvartilC}{\kvtPctC}
\psline(0,100)(\calc{\maksimum+1},100)
\end{pspicture}
\end{figure}}
\end{frame}
\begin{frame}{\visible<1->{Exercise}}
\visible<1->{%
\begin{align*}
(a, b, c)
&= (\kvartilA, \kvartilB, \kvartilC)\\
\operatorname{min}
&= \minimum\\
\operatorname{maks}
&= \maksimum\\
\operatorname{var}
&= \maksimum - \minimum
= \varians\\
\textnormal{type}
&= \typetal\\
\text{median}
&= \median\\
\textnormal{middel}
&= \frac{\middelTotal}{\hyppighedTotal}
\approx \num[round-mode = places, round-precision = 1]{\gennemsnit}
\end{align*}}
\end{frame}
\def\endehoejde{0.2}
\def\bokshoejde{0.5}
\begin{frame}{\visible<1->{Exercise}}
\visible<1->{%
\begin{figure}
\boksplot[
\endehoejde,
\bokshoejde
]{\minimum}%
{\kvartilA}%
{\kvartilB}%
{\kvartilC}%
{\maksimum}
\end{figure}}
\visible<2->{\emph{Description}: Something.}
\end{frame}
\end{document}
The code is very messy and not 'elegant' at all. I would like some help to improve it.
I haven't posted it at {TeX} Stackexchange because I think the question will be closed there for being "primarily opinion-based".