I am a relative new user of Latex. I must write a very big system of equations but, I would like to put some text at the beginning and at the end of the equation. Unfortunately, I am not able to do this.
Here you can find the code that I am using right now. The result is not satisfactory. Can you help me?
Kind regards,
Nora
Code: Select all
Find $\boldsymbol{u^+}\in \boldsymbol{H}^1(\Omega^+)$, $\boldsymbol{u^-}\in \boldsymbol{H}^1(\Omega^-)$, $p^+\in L^2(\Omega^+)$, $p^-\in L^2(\Omega^-)$, $\boldsymbol{\lambda_{in}^+}\in \boldsymbol{L}^2(\Gamma^+_{in})$, $\boldsymbol{\lambda_{in}^-}\in \boldsymbol{L}^2(\Gamma^-_{in})$, $\boldsymbol{\lambda_s^+}\in \boldsymbol{L}^2(\Gamma^+_s)$, $\boldsymbol{\lambda_s^-}\in \boldsymbol{L}^2(\Gamma^-_s)$, $\boldsymbol{\lambda_{sym}}\in \boldsymbol{L}^2(\Gamma_{sym})$ such that:
\begin{equation}
\left\{
\begin{aligned}
\label{eq:46}
&\int_{\Omega^+} \frac{\partial \boldsymbol{u^+}}{\partial t} \cdot \boldsymbol{v^+} + \int_{\Omega^-} \frac{\partial \boldsymbol{u^-}}{\partial t} \cdot \boldsymbol{v^-} + \int_{\Omega^+} [(\boldsymbol{u^+} \cdot \nabla) \boldsymbol{u^+}] \cdot \boldsymbol{v^+} + \int_\Omega [(\boldsymbol{u^-} \cdot \nabla) \boldsymbol{u^-}] \cdot \boldsymbol{v^-} \\& + \frac{1}{Re} \int_{\Omega^+} [(\nabla\boldsymbol{u^+} + \nabla\boldsymbol{u^+}^T)] \cdot \nabla\boldsymbol{v^+} + \frac{1}{Re} \int_{\Omega^-} [(\nabla\boldsymbol{u^-} + \nabla\boldsymbol{u^-}^T)] \cdot \nabla\boldsymbol{v^-}\\&- \int_{\Omega^+} \nabla p^+ \cdot \boldsymbol{v^+} - \int_{\Omega^-} \nabla p^- \cdot \boldsymbol{v^-} + \int_{\Gamma^+_{in}} \boldsymbol{\lambda^+_{in}}\cdot \boldsymbol{v^+} + \int_{\Gamma^-_{in}} \boldsymbol{\lambda^-_{in}}\cdot \boldsymbol{v^-} \\&+ \int_{\Gamma_s^+} \boldsymbol{\lambda_{s}^+}\cdot \boldsymbol{v^+} + \int_{\Gamma_s^-} \boldsymbol{\lambda_{s}^-}\cdot \boldsymbol{v^-} + \int_{\Gamma_{sym}} \boldsymbol{\lambda_{sym}}\cdot (\boldsymbol{v^+} - \boldsymbol{v^-}) = 0,\\
&-\int_{\Omega^+} q^+ \nabla \cdot \boldsymbol{u^+}-\int_{\Omega^-} q^- \nabla \cdot \boldsymbol{u^-} = 0,\\
&\int_{\Gamma^+_{in}}\boldsymbol{u^+}\cdot \boldsymbol{\mu^+} = \int_{\Gamma^+_{in}}\boldsymbol{u^+_{in}}\cdot \boldsymbol{\mu^+},
\quad \int_{\Gamma^-_{in}}\boldsymbol{u^-}\cdot \boldsymbol{\mu^-} = \int_{\Gamma^-_{in}}\boldsymbol{u^-_{in}}\cdot \boldsymbol{\mu^-},\\
&\int_{\Gamma^+_s} \boldsymbol{u^+} \cdot \boldsymbol{\eta^+} = \int_{\Gamma^+_s} \boldsymbol{u^+_s} \cdot \boldsymbol{\eta^+}, \quad \int_{\Gamma^-_s} \boldsymbol{u^-} \cdot \boldsymbol{\eta^-} = \int_{\Gamma^-_s} \boldsymbol{u^-_s} \cdot \boldsymbol{\eta^-},\\
&\int_{\Gamma_{sym}} (\boldsymbol{u^+} - \boldsymbol{u^-})\cdot\boldsymbol{\xi} = 0.
\end{aligned}
\right.
\end{equation}$\forall$ $\boldsymbol{v^+}\in \boldsymbol{H}^1(\Omega^+)$, $\boldsymbol{v^-}\in \boldsymbol{H}^1(\Omega^-)$, $q^+\in L^2(\Omega^+)$, $q^-\in L^2(\Omega^-)$, $\boldsymbol{\mu^+}\in \boldsymbol{L}^2(\Gamma^+_{in})$, $\boldsymbol{\eta^+}\in \boldsymbol{L}^2(\Gamma^+_s)$, $\boldsymbol{\eta^-}\in \boldsymbol{L}^2(\Gamma^-_s)$, $\boldsymbol{\xi}\in \boldsymbol{L}^2(\Gamma_{sym})$.