I have already posted similar question, but never gone around solving this problem!!!
How can I fit a very long equation into an A4 page ?
Please see attached the output file.
and here is the code:
Code: Select all
Code, edit and compile here:
\begin{equation}U_{1} = \frac{\frac{L \sqrt{(A_{0} + x)^2 + L^2} \sin(\frac{A_{0} + x}{L} + \theta)}{I_{p}A_{2}}}{\frac{L \sqrt{(A_{0} + x)^2 + L^2} \sin(\frac{A_{0} + x}{L} + \theta)}{m I_{p}A_{2}} - \frac{m L \sqrt{(A_{0} + x)^2 + L^2} \sin(\frac{A_{0} + x}{L} - \theta)}{m I_{p}A_{1}}}(\dot{x}_{2}- tr_{1} x_{2} - I_{p}A_{2}\frac{(\dot{x}_{4} - tr_{4} x_{2})}{m L \sqrt{(A_{0} + x)^2 + L^2}\sin(\frac{A_{0} + x}{L} + \theta)} - g)\label{eq:u1}\end{equation}
Code: Select all
Code, edit and compile here:
\begin{gather}\begin{split}\label{u1S}U_{1} = \frac{\frac{L \sqrt{(A_{0} + x)^2 + L^2} \sin(\frac{A_{0} + x}{L} + \theta)}{I_{p}A_{2}}}{\frac{L \sqrt{(A_{0} + x)^2 + L^2} \sin(\frac{A_{0} + x}{L} + \theta)}{m I_{p}A_{2}} - \frac{m L \sqrt{(A_{0} + x)^2 + L^2} \sin(\frac{A_{0} + x}{L} - \theta)}{m I_{p}A_{1}}}(\dot{x}_{2}- tr_{1} x_{2} - I_{p}A_{2}\frac{(\dot{x}_{4} - tr_{4} x_{2})}{m L \sqrt{(A_{0} + x)^2 + L^2}\sin(\frac{A_{0} + x}{L} + \theta)} - g)\end{split}\end{gather}