Math & Science ⇒ Equation crosses the right boundary
Equation crosses the right boundary
- Attachments
-
- LaTeX1.pdf
- pdf file
- (19.57 KiB) Downloaded 280 times
-
- LaTeX1.tex
- tex file
- (1.61 KiB) Downloaded 238 times
Learn LaTeX easily with newest books:
The LaTeX Beginner's Guide: 2nd edition and perfect for students writing a thesis
The LaTeX Cookbook: 2nd edition full of practical examples for mathematics, physics, chemistry, and more
LaTeX Graphics with TikZ: the first book about TikZ for perfect drawings in your LaTeX thesis
- Stefan Kottwitz
- Site Admin
- Posts: 10359
- Joined: Mon Mar 10, 2008 9:44 pm
Equation crosses the right boundary
Code: Select all
\begin{multline}
\Re{\left(\left[\frac{d\lambda}{d\tau}\right]^{-2}\right)_{\lambda= i\omega \pi\rho}}
= \Re\left[{\frac {{{\rm e}^{\lambda\tau}} \left( -2\,\lambda +A\rho \right) }{ \left( B\lambda -C \right) \lambda}}+{\frac {B}{ \left(
B\lambda -C \right) \lambda}}\right]_{\lambda= i\omega_0}\nonumber\\
= \left[{\frac {\left( -CA-2\,B{\omega_0}^{2} \right) \sin \left( \omega_0\,\tau \right) + \left( -B\omega_0\,A+2\,C\omega_0 \right) \cos \left( \omega_0\,\tau
\right) -{B}^{2}\omega_0}{ \left( {C}^{2}+{B}^{2}{\omega_0}^{2} \rho\right) \omega_0}}\right]\nonumber\\
=\frac{C^2}{\left( C^2+B^2\omega_0^2\right) \omega_0^2\rho}>0.\nonumber
\end{multline}
Re: Equation crosses the right boundary
- Attachments
-
- ff.JPG (26.08 KiB) Viewed 2984 times
- Stefan Kottwitz
- Site Admin
- Posts: 10359
- Joined: Mon Mar 10, 2008 9:44 pm
Equation crosses the right boundary
shoveright
:Code: Select all
\begin{multline}
\Re{\left(\left[\frac{d\lambda}{d\tau}\right]^{-2}\right)_{\lambda= i\omega \pi\rho}}
= \Re\left[{\frac {{{\rm e}^{\lambda\tau}} \left( -2\,\lambda +A\rho \right) }{ \left( B\lambda -C \right) \lambda}}+{\frac {B}{ \left(
B\lambda -C \right) \lambda}}\right]_{\lambda= i\omega_0}\nonumber\\
= \left[{\frac {\left( -CA-2\,B{\omega_0}^{2} \right) \sin \left( \omega_0\,\tau \right) + \left( -B\omega_0\,A+2\,C\omega_0 \right) \cos \left( \omega_0\,\tau
\right) -{B}^{2}\omega_0}{ \left( {C}^{2}+{B}^{2}{\omega_0}^{2} \rho\right) \omega_0}}\right]\shoveright\nonumber\\
=\frac{C^2}{\left( C^2+B^2\omega_0^2\right) \omega_0^2\rho}>0.\nonumber
\end{multline}