I have the following code
Code: Select all
\documentclass[10pt,reqno]{article}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage[top=36.9mm,bottom=20mm,left=20mm,right=20mm]{geometry}
\usepackage[pdfstartview=FitV,bookmarks=false]{hyperref}
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\theoremstyle{definition}
\newtheorem{lemma}{Lemma}[section]
\begin{document}
Consider the differential equation
\begin{equation}
u^{(n)}(t)+a(t)u(t)=0\quad\text{for}\ t\in[0,\infty),\label{eq1}
\end{equation}
where $n\geq3$ and $a:[0,\infty)\to\mathbb{R}$ is continuous.
We generally assume that one of the following inequalities is satisfied:
\begin{equation}
a(t)\geq0\quad\text{for}\ t\in[0,\infty)\label{eq2}
\end{equation}
or
\begin{equation}
a(t)\leq0\quad\text{for}\ t\in[0,\infty).\label{eq3}
\end{equation}
We understand a solution of \eqref{eq1} to be a nontrivial solution defined on $[0,\infty)$.
A solution of \eqref{eq1} is said to be oscillating if it has an enumerable number of zeros,
and nonoscillating otherwise.
Equation~\eqref{eq1} is called nonoscillatory if all of its solutions are nonoscillating,
and oscillatory if at least one solution is oscillating.
\begin{lemma}\label{prlm1}
Let inequality \eqref{eq2} [inequality \eqref{eq3}] be satisfied and let $u$ be a solution of \eqref{eq1} such that
\begin{equation}
u(t)>0\quad\text{for all}\ t\in[t_{0},\infty).\notag
\end{equation}
Then there are numbers $t_{1}\in[t_{0},\infty)$ and $\ell\in\{0,1,\cdots,n\}$ such that $(n+\ell)$ is odd [even] and
\begin{equation}
\begin{gathered}
u^{(i)}(t)>0\quad\text{for all}\ t\in[t_{1},\infty)\ \text{and}\ i=0,1,\cdots,\ell-1\\
(-1)^{\ell-i}u^{(i)}(t)>0\quad\text{for all}\ t\in[t_{1},\infty)\ \text{and}\ i=\ell,\ell+1,\cdots,n.
\end{gathered}\label{prlm1eq1}\tag{\theequation$_{\ell}$}
\end{equation}
\end{lemma}
\begin{lemma}\label{prlm2}
If inequality \eqref{eq2} is satisfied,
then for \eqref{eq1} to have a solution satisfying condition ($0.3_{n-1}$) it is necessary and sufficient
that the equation
\begin{equation}
u^{(n)}(t)+(-1)^{n}a(t)u(t)=0\quad\text{for}\ t\in[0,\infty),\label{prlm3eq1}
\end{equation}
has a solution satisfying condition ($0.3_{1}$).
\end{lemma}
\end{document}
Many thanks.
bkarpuz