I did some searching but couldn't find anything on the subject, so my question is that how would you define sparse block-Toeplitz matrix? Here's my attempt:
Code: Select all
Code, edit and compile here:
\documentclass{article}\usepackage{mathtools}\usepackage{amsfonts}\begin{document}\begin{equation} \label{tMat1}\mathbf{T} =\begin{bmatrix}\mathbf{V}_{A} & \mathbf{0} & \cdots & \mathbf{0} \\\mathbf{V}_{B} & \mathbf{V}_{A} & & \vdots \\\mathbf{0} & \mathbf{V}_{B} & \ddots & \mathbf{0} \\\vdots & \mathbf{0} & \ddots & \mathbf{V}_{A} \\\mathbf{0} & \mathbf{0} & \cdots & \mathbf{V}_{B}\end{bmatrix} \\\in \mathbb{C}^{NQ+W-1 \times NK}\end{equation}, where it is assumed that $W \leq L$ and that\begin{equation} \label{vMtx1}\mathbf{V} = \left[ \mathbf{V}_{A} \mathbf{V}_{B} \right]^{T} = \left[ \mathbf{b}^{(1)} \mathbf{b}^{(2)} \ldots \mathbf{b}^{(K)} \right] \in \mathbb{C}^{Q+W-1 \times K}\end{equation}\end{document}
Edit:
I used the PGF/TikZ package to create columns of the Toeplitz matrix as boxes and put those inside equation environment. I'll post the code later.