I am getting trying to reach the following result with empheq. I have a system of equation and I would like to numerate each equation as 1a, 1b, 1c... so I can refer both to the single equation (e.g see equation (1a)) and the entire system (e.g. see system (1)). This is what I did but I am not able to make it work:
Code: Select all
\begin{empheq}[left=\empheqlbrace]{align}
%
& \pder{ h_1}{ t} + \pder{ q_{1x} }{x} + \pder{ q_{1y} }{ y} =
F^{int}_m + F^{int}_w
\label{eq:1}\\
%
& \pder{ q_{1x} }{t} + \pder{}{x}
\left( \dfrac{q_{1x}^2}{h_1} + \dfrac{g}{2}\dfrac{\rho_1}{\rho_0} h_1^2 \right) +
\pder{}{y} \left( \dfrac{q_{1x} \, q_{1y}}{h_1} \right) +
g\dfrac{\rho_1}{\rho_0} h_1 \pder{(Z_{bed} + h_2)}{x} = -\dfrac{\tau^{int}_x}{\rho_0}
%
\label{eq:2}\\
& \pder{q_{1y}}{t} + \pder{}{x} \left( \dfrac{q_{1y} \, q_{1x}}{h_1} \right) +
\pder{}{y} \left( \dfrac{q_{1y}^2}{h_1} + \dfrac{g}{2}\dfrac{\rho_1}{\rho_0} h_1^2 \right) +
g\dfrac{\rho_1}{\rho_0} h_1 \pder{(Z_{bed} + h_2)}{y} = - \dfrac{\tau^{int}_y}{\rho_0}
\label{eq:3}\\
%
& \pder{C_{h1}}{t} + \pder{}{x}\left(\dfrac{C_{h1} q_{1x}}{h_1}\right) +
\pder{}{y}\left(\dfrac{C_{h1} q_{1y}}{h_1}\right) = F^{int}_m
% & \qquad &
\label{eq:4}\\
%
& \pder{(C_2 h_2)}{t} + \pder{(C_2 \, q_{2x})}{x} +
\pder{(C_2 q_{2y})}{y} = - F^{int}_m + F^{bed}_m
\label{eq:5}\\
%
& \pder{q_{2x}}{t} +
\pder{}{x} \left( \dfrac{q_{2x}^2}{h_2} + \dfrac{g}{2} h_2^2 \right) +
\pder{}{y} \left( \dfrac{q_{2x} \, q_{2y}}{h_2} \right) +
g h_2 \pder{Z_{bed}}{x} + g\dfrac{\rho_1}{\rho_2} h_2 \pder{h_1}{x} =\dfrac{\tau^{int}_x - \tau^{bed}_x}{\rho_2}
\label{eq:6}\\
%
& \pder{q_{2y}}{t} + \pder{}{x} \left( \dfrac{q_{2y} \, q_{2x}}{h_2} \right) +
\pder{}{y} \left( \dfrac{q_{2y}^2}{h_2} + \dfrac{g}{2} h_2^2 \right) +
g h_2 \pder{Z_{bed}}{y} + g\dfrac{\rho_1}{\rho_2} h_2 \pder{h_1}{ y} = \dfrac{\tau^{int}_y - \tau^{bed}_y}{\rho_2}
\label{eq:7}\\
%
& \pder{Z_b}{t}= - \dfrac{F^{bed}_m }{1-p}\;, \label{eq:8}
\end{empheq}
thanks
veniceboy