I'm trying to draw many automatas in the same file for a homework purpose. I've observe an overlaping of the automatas in my file.
How can fix the problem please? I tried to use the \section and \subsection tags, but it doesn't do anything.
See as attachment the output of my latex file, got with the command
.xelatex --shell-escape MyOutput.tex
Here is my latex code:
Code: Select all
\documentclass[12pt,letterpaper,boxed]{amspset}
\usepackage{vaucanson-g}
\usepackage{multicol}
\duedate{\today}
\begin{document}
\section*{Question 1}
\begin{problem}[1.1.1]
\end{problem}
\subsection*{automate 1}
Réponse:
\begin{solution}
\begin{VCPicture}{(0,-2)(6,2)}
% states
\State[A]{(0,-1)}{A} \FinalState[B]{(3,0)}{B} \State[C]{(6,0)}{C}
\FinalState[D]{(3,-3)}{D} \State[E]{(6,-3)}{E}
% initial--final
\Initial{A}
% transitions
\EdgeL{A}{B}{a} \ArcL{B}{C}{b} \ArcR{B}{C}{b}
\EdgeR{A}{D}{b} \ArcL{D}{E}{b} \ArcR{D}{E}{a}
%
\end{VCPicture}
\end{solution}
\subsection*{automate 2}
\begin{solution}
\begin{VCPicture}{(0,-2)(6,2)}
% states
\State[A]{(0,0)}{A} \FinalState[B]{(3,0)}{B} \FinalState[C]{(6,0)}{C}
% initial--final
\Initial{A}
% transitions
\EdgeL{A}{B}{a} \ForthBackOffset \ArcL{B}{C}{a,b} \ArcL{C}{B}{a}
%
\end{VCPicture}
\end{solution}
\subsection*{automate 3}
\begin{solution}
\begin{VCPicture}{(0,-2)(6,2)}
% states
\State[A]{(0,-1)}{A} \FinalState[B]{(3,0)}{B} \FinalState[C]{(6,0)}{C}
\State[D]{(3,-3)}{D} \FinalState[E]{(6,-3)}{E}
% initial--final
\Initial{A}
% transitions
\ArcL{A}{B}{a} \EdgeL{B}{C}{a}
\ArcL{A}{D}{b} \ArcR{A}{D}{b} \ArcL{B}{D}{b}
\ArcL{C}{D}{b} \ArcR{D}{E}{b}
%
\end{VCPicture}
\end{solution}
\section*{Question 4}
\subsection*{Fonction de transition}
\begin{multicols}{2}
$\delta(\emptyset, a)=\emptyset$ \\
$\delta(\{1\}, a)=\{1,2\}$ \\
$\delta(\{2\}, a)=\{3\}$ \\
$\delta(\{3\}, a)=\{1\}$ \\
$\delta(\{4\}, a)=\{2\}$ \\
$\delta(\{1,2\}, a)=\{1,2,3\}$ \\
$\delta(\{1,3\}, a)=\{1,2\}$ \\
$\delta(\{1,4\}, a)=\{1,2\}$ \\
$\delta(\{2,3\}, a)=\{1,3\}$ \\
$\delta(\{2,4\}, a)=\{2,3\}$ \\
$\delta(\{3,4\}, a)=\{1,2\}$ \\
$\delta(\{1,2,3\}, a)=\{1,2,3\}$ \\
$\delta(\{1,2,4\}, a)=\{1,2,3\}$ \\
$\delta(\{2,3,4\}, a)=\{1,2,3\}$ \\
$\delta(\{3,4,1\}, a)=\{1,2\}$ \\
$\delta(\{1,2,3,4\}, a)=\{1,2,3\}$ \\
$\delta(\emptyset, b)=\emptyset$ \\
$\delta(\{1\}, b)=\{3\}$ \\
$\delta(\{2\}, b)=\{1,2\}$ \\
$\delta(\{3\}, b)=\{4\}$ \\
$\delta(\{4\}, b)=\emptyset$ \\
$\delta(\{1,2\}, b)=\{1,2,3\}$ \\
$\delta(\{1,3\}, b)=\{3,4\}$ \\
$\delta(\{1,4\}, b)=\{3\}$ \\
$\delta(\{2,3\}, b)=\{1,2,4\}$ \\
$\delta(\{2,4\}, b)=\{1,2\}$ \\
$\delta(\{3,4\}, b)=\{4\}$ \\
$\delta(\{1,2,3\}, b)=\{1,2,3,4\}$ \\
$\delta(\{1,2,4\}, b)=\{1,2,3\}$ \\
$\delta(\{2,3,4\}, b)=\{1,2,4\}$ \\
$\delta(\{3,4,1\}, b)=\{3,4\}$ \\
$\delta(\{1,2,3,4\}, b)=\{1,2,3,4\}$
\end{multicols}
\subsection*{Diagramme de transition}
\begin{solution}
\begin{VCPicture}{(0,-2)(6,2)}
% states
\LargeState \StateVar[{\{1\}}]{(0,0)}{A} \StateVar[{\{2\}}]{(4,0)}{B} \StateVar[{\{3\}}]{(8,0)}{C} \FinalStateVar[{\{4\}}]{(12,0)}{D}
\StateVar[{\{2,3\}}]{(0,-4)}{H} \FinalStateVar[{\{1,4\}}]{(4,-4)}{G} \StateVar[{\{1,3\}}]{(8,-4)}{F} \StateVar[{\{1,2\}}]{(12,-4)}{E}
\FinalStateVar[{\{2,4\}}]{(0,-8)}{I} \FinalStateVar[{\{3,4\}}]{(4,-8)}{J} \StateVar[{\{1,2,3\}}]{(8,-8)}{K} \FinalStateVar[{\{1,2,4\}}]{(12,-8)}{L}
\FinalStateVar[{\{2,3,4\}}]{(0,-12)}{O} \FinalStateVar[{\{3,4,1\}}]{(4,-12)}{N} \FinalStateVar[{\{1,2,3,4\}}]{(8,-12)}{M}
% initial--final
\Initial{A}
% transitions
\LoopN{A}{a} \EdgeL{A}{B}{a} \EdgeL{B}{C}{a} \LArcR{C}{A}{a} \LArcR{D}{B}{a}
\LArcL{A}{C}{b} \EdgeL{B}{E}{b} \EdgeL{C}{D}{b} %%
\LArcL{H}{F}{a} \LArcL{G}{E}{a} \LArcL{F}{E}{a} \ArcR{E}{K}{a}
\EdgeL{H}{L}{b} \LArcL{G}{C}{b} \LArcL{F}{J}{b} \LArcL{E}{K}{b} %%
\ArcL{I}{H}{a} \ArcL{J}{E}{a} \LoopS{K}{a} \ArcR{L}{K}{a}
\LArcR{I}{E}{b} \LArcL{J}{D}{b} \EdgeL{L}{K}{b} \LArcL{E}{K}{b} %%
\EdgeL{O}{K}{a} \LArcR{N}{E}{a} \ArcL{M}{K}{a}
\LArcR{O}{L}{b} \EdgeR{N}{J}{b} \EdgeL{K}{M}{b} \LoopS{M}{b} %%
\end{VCPicture}
\end{solution}
\subsection*{Diagramme de transition simplifié}
\begin{solution}
\begin{VCPicture}{(-0,16)(6, 16)}
% states
\LargeState \StateVar[{\{1\}}]{(0,0)}{A} \StateVar[{\{2\}}]{(4,0)}{B} \StateVar[{\{3\}}]{(8,0)}{C} \FinalStateVar[{\{4\}}]{(12,0)}{D}
\StateVar[{\{2,3\}}]{(0,-4)}{H} \FinalStateVar[{\{1,4\}}]{(4,-4)}{G} \StateVar[{\{1,3\}}]{(8,-4)}{F} \StateVar[{\{1,2\}}]{(12,-4)}{E}
\FinalStateVar[{\{2,4\}}]{(0,-8)}{I} \FinalStateVar[{\{3,4\}}]{(4,-8)}{J} \StateVar[{\{1,2,3\}}]{(8,-8)}{K} \FinalStateVar[{\{1,2,4\}}]{(12,-8)}{L}
\FinalStateVar[{\{1,2,3,4\}}]{(8,-12)}{M}
% initial--final
\Initial{A}
% transitions
\LoopN{A}{a} \EdgeL{A}{B}{a} \EdgeL{B}{C}{a} \LArcR{C}{A}{a} \LArcR{D}{B}{a}
\LArcL{A}{C}{b} \EdgeL{B}{E}{b} \EdgeL{C}{D}{b} %%
\LArcL{H}{F}{a} \LArcL{G}{E}{a} \LArcL{F}{E}{a} \ArcR{E}{K}{a}
\EdgeL{H}{L}{b} \LArcL{G}{C}{b} \LArcL{F}{J}{b} \LArcL{E}{K}{b} %%
\ArcL{I}{H}{a} \ArcL{J}{E}{a} \LoopS{K}{a} \ArcR{L}{K}{a}
\LArcR{I}{E}{b} \LArcL{J}{D}{b} \EdgeL{L}{K}{b} \LArcL{E}{K}{b} %%
\ArcL{M}{K}{a}
\EdgeL{K}{M}{b} \LoopS{M}{b} %%
\end{VCPicture}
\end{solution}
\end{document}