In my opinion, none of both options, even improved, are acceptable, since you've chosen a bad break point. If a line is broken inside a bracketed expression, the second line should start at the right of the opening bracket. This is not correct:
Code: Select all
left = right 1 - [ right 2
+ right 3 + right 4 ]
The above scheme is confusing, since the reader, at first sight, may think that right 3 sums to right 1.
This is correct:
Code: Select all
left = right 1 - [ right 2
+ right 3 + right 4 ]
More acceptable options:
Code: Select all
left = right 1
- [ right 2 + right 3 + right 4 ]
or even, using a third line:
Code: Select all
left = right 1
- [ right 2
+ right 3 + right 4 ]
Following these ideas, I give some options for your equation:
Code: Select all
\documentclass[a4paper]{report}
\usepackage[margin=1.5cm]{geometry}
%\usepackage{amsmath}
\usepackage{mathtools}
\newcommand{\parr}[1]{\vec{#1_{\parallel}}}
\newcommand{\qR}[1][1]{\ifnum#1=1 \frac{|\parr{q}|}{|\parr{R}|} \else
\frac{|\parr{q}|^{#1}}{|\parr{R}|^{#1}} \fi}
\newcommand{\cPp}[1][1]{\ifnum#1=1 \cos(\Phi_R-\phi) \else \cos^{#1}(\Phi_R-\phi)\fi}
\newcommand{\tab}{\qquad}
\begin{document}
Writing $Q=|\parr{q}|\,/\,|\parr{R}|$ and $\gamma=\cPp$, we have
\begin{equation}
\left(1+Q^2+2Q\gamma\right)^{1/2}=1-\frac{l}{2}Q^2-lQ\gamma
+\frac{(l^2+2l)}{8}[ Q^4+4Q^2\gamma^2+4Q^3\gamma ] \\
=1-\frac{l}{2}Q^2-lQ\gamma+\frac{(l^2+2l)}{2}Q^2\gamma^2,
\end{equation}
Let $Q=|\parr{q}|\,/\,|\parr{R}|$ and $\gamma=\cPp$. Then,
\begin{multline}
\left(1+Q^2+2Q\gamma\right)^{1/2}=1-\frac{l}{2}Q^2-lQ\gamma
+\frac{(l^2+2l)}{8}[ Q^4+4Q^2\gamma^2+4Q^3\gamma ] \\
=1-\frac{l}{2}Q^2-lQ\gamma+\frac{(l^2+2l)}{2}Q^2\gamma^2,
\end{multline}
\begin{equation}
\begin{split}
\left(1+Q^2+2Q\gamma\right)^{1/2}&=1-\frac{l}{2}Q^2-lQ\gamma
+\frac{(l^2+2l)}{8}[ Q^4+4Q^2\gamma^2+4Q^3\gamma ] \\
&=1-\frac{l}{2}Q^2-lQ\gamma+\frac{(l^2+2l)}{2}Q^2\gamma^2,
\end{split}
\end{equation}
where
\[ Q=\qR \qquad \text{and} \qquad \gamma=\cPp. \]
\begin{align}
&\left(1+\qR[2]+2\qR\cPp\right)^{1/2} \notag \\
&\tab=1-\frac{l}{2}\qR[2]-l\qR\cPp
+\frac{(l^2+2l)}{8}\Bigg[ \qR[4]+4\qR[2]\cPp[2]+4\qR[3]\cPp \Bigg] \\
&\tab=1-\frac{l}{2}\qR[2]-l\qR\cPp+\frac{(l^2+2l)}{2}\qR[2]\cPp[2] \notag
\end{align}
\begin{align}
\MoveEqLeft\left(1+\qR[2]+2\qR\cPp\right)^{1/2} \notag \\
&=1-\frac{l}{2}\qR[2]-l\qR\cPp
+\frac{(l^2+2l)}{8}\Bigg[ \qR[4]+4\qR[2]\cPp[2]+4\qR[3]\cPp \Bigg] \\
&=1-\frac{l}{2}\qR[2]-l\qR\cPp+\frac{(l^2+2l)}{2}\qR[2]\cPp[2] \notag
\end{align}
\begin{equation}
\begin{split}
&\left(1+\qR[2]+2\qR\cPp\right)^{1/2} \\
&\tab =1-\frac{l}{2}\qR[2]-l\qR\cPp
+\frac{(l^2+2l)}{8}\Bigg[ \qR[4]+4\qR[2]\cPp[2]+4\qR[3]\cPp \Bigg] \\
&\tab=1-\frac{l}{2}\qR[2]-l\qR\cPp+\frac{(l^2+2l)}{2}\qR[2]\cPp[2]
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\MoveEqLeft\left(1+\qR[2]+2\qR\cPp\right)^{1/2} \\
& =1-\frac{l}{2}\qR[2]-l\qR\cPp
+\frac{(l^2+2l)}{8}\Bigg[ \qR[4]+4\qR[2]\cPp[2]+4\qR[3]\cPp \Bigg] \\
& =1-\frac{l}{2}\qR[2]-l\qR\cPp+\frac{(l^2+2l)}{2}\qR[2]\cPp[2]
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\left(1+\qR[2]+2\qR\cPp\right)^{1/2}
={}& 1-\frac{l}{2}\qR[2]-l\qR\cPp \\
&\tab+\frac{(l^2+2l)}{8}
\Bigg[ \qR[4]+4\qR[2]\cPp[2]+4\qR[3]\cPp \Bigg] \\
={}& 1-\frac{l}{2}\qR[2]-l\qR\cPp+\frac{(l^2+2l)}{2}\qR[2]\cPp[2]
\end{split}
\end{equation}
\begin{equation}
\begin{split}
&\left(1+\qR[2]+2\qR\cPp\right)^{1/2} \\
&\tab =1-\frac{l}{2}\qR[2]-l\qR\cPp \\
&\tab\phantom{{}={}}\tab+\frac{(l^2+2l)}{8}
\Bigg[ \qR[4]+4\qR[2]\cPp[2]+4\qR[3]\cPp \Bigg] \\
&\tab=1-\frac{l}{2}\qR[2]-l\qR\cPp+\frac{(l^2+2l)}{2}\qR[2]\cPp[2]
\end{split}
\end{equation}
\begin{equation}
\begin{split}
&\left(1+\qR[2]+2\qR\cPp\right)^{1/2} \\
&\tab =\!
\begin{aligned}[t]
&1-\frac{l}{2}\qR[2]-l\qR\cPp \\
&\tab+\frac{(l^2+2l)}{8}
\Bigg[ \qR[4]+4\qR[2]\cPp[2]+4\qR[3]\cPp \Bigg]
\end{aligned} \\
&\tab=1-\frac{l}{2}\qR[2]-l\qR\cPp+\frac{(l^2+2l)}{2}\qR[2]\cPp[2]
\end{split}
\end{equation}
\end{document}
To simplify the input, I've defined the commands \qR and \cPp. Check the definition of \parr, slightly different from yours. See also the exponent 1/2. The mathtools package extends amsmath. If you don't use \MoveEqLeft (see the code), then you can safely load only amsmath. Anyway, read the manual of mathtools, since this package offers many interesting things. There is no unique way to achieve a particular arrangement, as you can easily realize. I hope this helps.