Text Formattingnewtheorem style

Information and discussion about LaTeX's general text formatting features (e.g. bold, italic, enumerations, ...)
Post Reply
azertyazerty
Posts: 7
Joined: Fri Nov 26, 2010 8:30 pm

newtheorem style

Post by azertyazerty »

Hi guys,

I couldn't find anything related to this on the forum or google.
I would like to make a theorem called definition that looks exactly the same as the one on the first and the eighth line of the attached pdf.

At this moment, I have:

Code: Select all

\newtheorem{definitie}{Definitie}
Now I want to rebuild the lines using this code:

Code: Select all

\begin{Definitie}[\textbf{Kettingregel}]
The brackets are still not bold, and Latex also included a dot. There should be a way to obtain the original text. Any ideas?
Attachments
preview.pdf
(41.71 KiB) Downloaded 237 times
Last edited by azertyazerty on Sat Jan 08, 2011 5:17 pm, edited 1 time in total.

Recommended reading 2024:

LaTeXguide.org • LaTeX-Cookbook.net • TikZ.org

NEW: TikZ book now 40% off at Amazon.com for a short time.

And: Currently, Packt sells ebooks for $4.99 each if you buy 5 of their over 1000 ebooks. If you choose only a single one, $9.99. How about combining 3 LaTeX books with Python, gnuplot, mathplotlib, Matlab, ChatGPT or other AI books? Epub and PDF. Bundle (3 books, add more for higher discount): https://packt.link/MDH5p

frabjous
Posts: 2064
Joined: Fri Mar 06, 2009 12:20 am

newtheorem style

Post by frabjous »

I think that looks like the regular plain style of the ntheorem package. However, if you wanted to customize it, the package provides lots of options for that too.

Code: Select all

\documentclass{article}
\usepackage[dutch]{babel}
\usepackage{amsmath}
\usepackage[amsmath]{ntheorem}
\theoremstyle{plain}
\newtheorem{definitie}{Definitie}

\begin{document}

\begin{definitie}[Kettingregel]
De kettingregel is een formule voor het bepalen van de afgeleide van een samengestelde functie. De meeste functies zijn samengesteld uit een aantal elementaire functies, waarvan de afgeleiden bekend zijn. Als een functie $f$ te schrijven is als $f(x) = g(h(x))$, en de afgeleiden van de funties $g$ en $h$ zijn bekend, dan is
\[
f'(x) = g'(h(x)) \cdot h'(x),
\]
of eleganter in een meer gebruikte notatie:
\[
\frac{df}{dx} = \frac{df}{fh} \frac{dh}{dx}
\]
\end{definitie}

\end{document}

azertyazerty
Posts: 7
Joined: Fri Nov 26, 2010 8:30 pm

Re: newtheorem style

Post by azertyazerty »

Exactly what I was looking for, thank you so much!
Post Reply