I have the following matrix
Code: Select all
\[ P^{(t)}=P^t
=\bordermatrix[{[]}]{ \displaystyle
&1&2\cr
1&\frac{b+(1-a)(a-b)^t}{1-a+b}&\frac{(1-a)-(1-a)(a-b)^t}{1-a+b}\cr
2&\frac{b-b(a-b)^t}{1-a+b}&\frac{(1-a)+b(a-b)^t}{1-a+b}}\label{Pt}\]
Code: Select all
\[ P^{(t)}=P^t
=\bordermatrix[{[]}]{ \displaystyle
&1&2\cr
1&\frac{b+(1-a)(a-b)^t}{1-a+b}&\frac{(1-a)-(1-a)(a-b)^t}{1-a+b}\cr
2&\frac{b-b(a-b)^t}{1-a+b}&\frac{(1-a)+b(a-b)^t}{1-a+b}}\label{Pt}\]
NEW: TikZ book now 40% off at Amazon.com for a short time.
Code: Select all
\documentclass[11pt,a4paper]{book}
\usepackage{amsmath}
\makeatletter
\newif\if@borderstar
\def\bordermatrix{\@ifnextchar*{%
\@borderstartrue\@bordermatrix@i}{\@borderstarfalse\@bordermatrix@i*}%
}
\def\@bordermatrix@i*{\@ifnextchar[{\@bordermatrix@ii}{\@bordermatrix@ii[()]}}
\def\@bordermatrix@ii[#1]#2{%
\begingroup
\m@th\@tempdima8.75\p@\setbox\z@\vbox{%
\def\cr{\crcr\noalign{\kern 2\p@\global\let\cr\endline }}%
\ialign {$##$\hfil\kern 2\p@\kern\@tempdima & \thinspace %
\hfil $##$\hfil && \quad\hfil $##$\hfil\crcr\omit\strut %
\hfil\crcr\noalign{\kern -\baselineskip}#2\crcr\omit %
\strut\cr}}%
\setbox\tw@\vbox{\unvcopy\z@\global\setbox\@ne\lastbox}%
\setbox\tw@\hbox{\unhbox\@ne\unskip\global\setbox\@ne\lastbox}%
\setbox\tw@\hbox{%
$\kern\wd\@ne\kern -\@tempdima\left\@firstoftwo#1%
\if@borderstar\kern2pt\else\kern -\wd\@ne\fi%
\global\setbox\@ne\vbox{\box\@ne\if@borderstar\else\kern 2\p@\fi}%
\vcenter{\if@borderstar\else\kern -\ht\@ne\fi%
\unvbox\z@\kern-\if@borderstar2\fi\baselineskip}%
\if@borderstar\kern-2\@tempdima\kern2\p@\else\,\fi\right\@secondoftwo#1 $%
}\null \;\vbox{\kern\ht\@ne\box\tw@}%
\endgroup
}
\makeatother
\begin{document}
\begin{equation}\label{Pt}
P^{(t)} = P^t =
\bordermatrix[{[]}]{
&1&2\cr
1&\dfrac{b+(1-a)(a-b)^t}{1-a+b}&\dfrac{(1-a)-(1-a)(a-b)^t}{1-a+b}\cr
2&\dfrac{b-b(a-b)^t}{1-a+b}&\dfrac{(1-a)+b(a-b)^t}{1-a+b}}
\end{equation}
\end{document}
NEW: TikZ book now 40% off at Amazon.com for a short time.