I have a Section within which I have a big Digression in the middle of it. So for that I have added
Code: Select all
\newtheorem{digression}{Digression}
In addition, I have lots of remarks within the 'digression' bit. But it is not very clear whether I'm reading the main texts of the Digression or the remarks on the digression section - mainly because both Digression and Remark are using italic font [, which afaik, supposed to work that way]. I was wondering if it is possible to make the digression texts as normal and keep the remarks as italics.
If you have any idea of writing it up slightly differently, without taking the Digression in a completely different section, please do so. The main reason is that after the digression bit I need to continue with the main topic.
Here is a .tex example.
Code: Select all
\documentclass[a4paper,12pt, final]{article}
\usepackage[margin=2.54cm,top=2.54cm]{geometry}
\usepackage{hyperref}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{verbatim}
\usepackage{graphicx}
\usepackage{array}
\newtheorem{theorem}{Theorem}
\newtheorem{algorithm}{Algorithm}
\newtheorem{axiom}{Axiom}
\newtheorem{case}{Case}
\newtheorem{claim}{Claim}
\newtheorem{conclusion}{Conclusion}
\newtheorem{condition}{Condition}
\newtheorem{conjecture}{Conjecture}
\newtheorem{corollary}{Corollary}
\newtheorem{criterion}{Criterion}
\newtheorem{definition}{Definition}
\newtheorem{digression}{Digression}
\newtheorem{example}{Example}
\newtheorem{exercise}{Exercise}
\newtheorem{lemma}{Lemma}
\newtheorem{notation}{Notation}
\newtheorem{problem}{Problem}
\newtheorem{proposition}{Proposition}
\newtheorem{remark}{Remark}
\newtheorem{solution}{Solution}
\newtheorem{summary}{Summary}
\hypersetup{colorlinks=true, linkcolor=black}
\begin{document}
\title{Dynamic Programming}
\author{My Name \\
My University}
\maketitle
%\keywords{Dynamic programming, Bellman equation, stochastic, Cobb-Douglas, eigenvalue, block matrix}
% \abstract{An example of stochastic Bellman equation (with Investment decision)}
From the outset we should note that in this quadratic approximation method,
there is no possibility of explosive solution because we know where the
steady state is, due to the fact that we are approximating everything around
a steady state. We will get explosive results if we made a bad guess about
the value function.
\section{Setup}
Consider an infinite horizon utility,
\begin{equation}
\max_{\left\{ \left( c_{t},k_{t+1}\right) \right\} _{t=0}^{\infty }}E_{0}
\left[ \sum_{t=0}^{\infty }\beta ^{t}\frac{c_{t}^{1-\theta }-1}{1-\theta }%
\right] ,\qquad \theta >0 \label{life_uitl}
\end{equation}%
subject to%
\begin{eqnarray*}
c_{t}+k_{t+1} &=&z_{t+1}k_{t}^{\alpha }+\left( 1-\delta \right) k_{t}, \\
AR\left( 1\right) :x_{t+1} &=&\rho x_{t}+\varepsilon _{t+1}, \\
\ln \left( z_{t+1}\right) &=&\rho \ln \left( z_{t}\right) +\varepsilon
_{t+1}, \\
\varepsilon _{t} &\overset{i.i.d.}{\sim }&N\left( 0,\sigma _{\varepsilon
}^{2}\right) .
\end{eqnarray*}%
We note that $z_{t}$ is moving around [i.e., stochastic component.]
\begin{remark}[Benefits of $E$]
It allows us to avoid more complicated notations.
\end{remark}
\begin{digression}[2 period model case]
Let us consider a $2$ period model,
\begin{equation}
\max_{\left( c_{0},c_{1}^{H},c_{1}^{L},k_{1}\right) }\frac{c_{0}^{1-\theta }%
}{1-\theta }+\beta \left[ \frac{\left( c^{H}\right) ^{1-\theta }-1}{1-\theta
}\pi +\frac{\left( c^{L}\right) ^{1-\theta }-1}{1-\theta }\left( 1-\pi
\right) \right] ,\qquad \alpha =1 \label{digress}
\end{equation}
\begin{remark}
my 1st remark under digression.
\end{remark}
\begin{remark}
2nd remark under digression.
\end{remark}
[Digression resumes here] Now the FOCs,
\begin{equation}
\frac{\partial \mathcal{L}}{\partial c_{0}}=0\Rightarrow c_{0}^{-\theta
}=\lambda _{0}, \label{1}
\end{equation}
\end{digression}
[Here we resume ourdiscussion for the section \textbf{Setup}] Back to the
infinte horizon case,
\begin{equation}
\frac{\partial \mathcal{L}}{\partial c_{t}}=0\Rightarrow \beta
^{t}c_{t}^{-\theta }=\lambda _{t} \label{5}
\end{equation}
\begin{equation}
\frac{\partial \mathcal{L}}{\partial k_{t+1}}=0\Rightarrow \lambda _{1}=E_{t}
\left[ \lambda _{t+1}\left( 1+z_{t+1}\right) \left( 1+z_{t+1}\alpha
k_{t+1}^{\alpha }-\delta \right) \right] . \label{6}
\end{equation}
In eq. (\ref{6}), it is \emph{assumed} that we are at period $t$ and $z_{t}$
has been \emph{revealed}.
\begin{equation}
\overset{(\ref{5})}{\Rightarrow }c_{t}^{-\theta }=\beta E_{t}\left[
c_{t+1}^{-\theta }\left( 1+z_{t+1}\alpha k_{t+1}^{\alpha }-\delta \right)
\right] . \label{7}
\end{equation}
\end{document}

Ash