I am creating a table of formulae. The left column is for numbering and the right one is for the formula.
My question is how to vertically center the formula without using a magic constant obtained from trial and error adjustment?
Here is my code snippet that has been simplified.
Code: Select all
\documentclass{article}
\usepackage[table]{xcolor}
\usepackage{array,longtable}
\newcounter{counter}
\renewcommand{\thecounter}{\stepcounter{counter}\raisebox{-0.63\depth}{\color{red}\bf\Large\arabic{counter}.}}
\newcolumntype{L}{>{\thecounter}r}
\newcolumntype{R}[1]{>{\parbox[c][#1][c]{0mm}{}\color{red}\Large\centering\arraybackslash$\displaystyle}m{0.5\linewidth}<{$}}
\begin{document}
\begin{longtable}{|L|R{15mm}|}\hline
\multicolumn{1}{|>{\Large\color{red}\bf}c|}{No} & \textrm{Equation}\\\hline
& \nabla\cdot\mathbf{D}=\rho_f \\\hline
& \nabla\cdot\mathbf{B}=0 \\\hline
& \nabla\times\mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\\hline
& \nabla\times\mathbf{H}=\mathbf{J}_f+\frac{\partial \mathbf{D}}{\partial t} \\\hline
& \int_a^b f(x)\, dx=F(b)-F(a) \\\hline
& \sin x\\\hline
& \nabla\cdot\mathbf{D}=\rho_f \\\hline
& \nabla\cdot\mathbf{B}=0 \\\hline
& \nabla\times\mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\\hline
& \nabla\times\mathbf{H}=\mathbf{J}_f+\frac{\partial \mathbf{D}}{\partial t} \\\hline
& \int_a^b f(x)\, dx=F(b)-F(a) \\\hline
& \sin x\\\hline
& \nabla\cdot\mathbf{D}=\rho_f \\\hline
& \nabla\cdot\mathbf{B}=0 \\\hline
& \nabla\times\mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\\hline
& \nabla\times\mathbf{H}=\mathbf{J}_f+\frac{\partial \mathbf{D}}{\partial t} \\\hline
& \int_a^b f(x)\, dx=F(b)-F(a) \\\hline
& \sin x\\\hline
& \nabla\cdot\mathbf{D}=\rho_f \\\hline
& \nabla\cdot\mathbf{B}=0 \\\hline
& \nabla\times\mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\\hline
& \nabla\times\mathbf{H}=\mathbf{J}_f+\frac{\partial \mathbf{D}}{\partial t} \\\hline
& \int_a^b f(x)\, dx=F(b)-F(a) \\\hline
& \sin x\\\hline
& \nabla\cdot\mathbf{D}=\rho_f \\\hline
& \nabla\cdot\mathbf{B}=0 \\\hline
& \nabla\times\mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\\hline
& \nabla\times\mathbf{H}=\mathbf{J}_f+\frac{\partial \mathbf{D}}{\partial t} \\\hline
& \int_a^b f(x)\, dx=F(b)-F(a) \\\hline
& \sin x\\\hline
& \nabla\cdot\mathbf{D}=\rho_f \\\hline
& \nabla\cdot\mathbf{B}=0 \\\hline
& \nabla\times\mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\\hline
& \nabla\times\mathbf{H}=\mathbf{J}_f+\frac{\partial \mathbf{D}}{\partial t} \\\hline
& \int_a^b f(x)\, dx=F(b)-F(a) \\\hline
& \sin x\\\hline
\end{longtable}
\end{document}
Thank you in advance.
regards,
Yuko