That could be done easily, I've just inserted some & symbols like mentioned above, each & right before the equal sign:
Code: Select all
\begin{equation}
\begin{array}{c}
\begin{aligned}
{V^\pi }(s) &= {E_\pi }\left\{ {{R_k}|{s_k} = s} \right\} \\
&= {E_\pi }\left\{ {{r_{k + 1}} + \gamma \sum\limits_{l = 0}^\infty {{\gamma ^l}{r_{k + l + 2}}|{s_k} = s} } \right\} \\
&= \sum\limits_a^{} {\pi (s,a)\sum\limits_{s'}^{} {P_{ss'}^a\left[ {R_{ss'}^a + \gamma {E_\pi }\left\{ {\sum\limits_{l = 0}^\infty {{\gamma ^l}{r_{t + l + 2}}|{s_{k + 1}} = s'} } \right\}} \right]} } \\
&= \sum\limits_a^{} {\pi (s,a)\sum\limits_{s'}^{} {P_{ss'}^a\left[ {R_{ss'}^a + \gamma {V^\pi }(s')} \right]} } \\
\end{aligned}
\end{array}
\end{equation}
Here's an alternative way using split instead of array and aligned:
Code: Select all
\begin{equation}
\begin{split}
{V^\pi }(s) &= {E_\pi }\left\{ {{R_k}|{s_k} = s} \right\} \\
&= {E_\pi }\left\{ {{r_{k + 1}} + \gamma \sum\limits_{l = 0}^\infty {{\gamma ^l}{r_{k + l + 2}}|{s_k} = s} } \right\} \\
&= \sum\limits_a^{} {\pi (s,a)\sum\limits_{s'}^{} {P_{ss'}^a\left[ {R_{ss'}^a + \gamma {E_\pi }\left\{ {\sum\limits_{l = 0}^\infty {{\gamma ^l}{r_{t + l + 2}}|{s_{k + 1}} = s'} } \right\}} \right]} } \\
&= \sum\limits_a^{} {\pi (s,a)\sum\limits_{s'}^{} {P_{ss'}^a\left[ {R_{ss'}^a + \gamma {V^\pi }(s')} \right]} } \\
\end{split}
\end{equation}
Stefan