Code: Select all
$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{k^2} \leq 2 - \frac{1}{k} .$
$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{k^2} + \frac{1}{(k+1)^2}\leq 2 - \frac{1}{k} + \frac{1}{(k+1)^2} $
$\sum_{i=1}^k+1 \frac{1}{i^[2]} \leq 2 - \frac{1}{k} + \frac{1}{(k+1)^2} $
\[
\sum_{i=1}^k+1 \frac{1}{i^[2]} \leq 2 - \frac { (k+1)^{2}}{(k)(k+1)^{2}} + \frac{k}{k(k+1)^{2}}
\]
$= 2 - \frac {(k+ k^{2} +2k+1)}{(k)(k+1)^{2}}$
$=2 - \frac{ (k^{2} +k)}{(k){(k+1)^{2}} - \frac{2k+1}{(k)(k+1)^{2}}$
$=2 - \frac{ (k)(k+1))}{(k){(k+1)^{2}} - \frac{2k+1}{(k)(k+1)^{2}}$
$2- \frac{1}{k+1} - \frac{2k+1}{{(k)(k+1)^[2]}$
In order for P(k) to imply P(k+1),
$\sum_{i=1}^k+1 \frac{1}{i^[2]} \leq 2 - \frac{1}{k+1}$
$2 - \frac{1}{k+1} = 2 - \frac{k(k+1)}{(k)(k+1)^[2]}$
$2- \frac{1}{k+1} - \frac{2k+1}{{(k)(k+1)^[2]} \leq 2 - \frac{1}{k+1}$