limit f(x)
= limit (x+2)/(x+1)
=(3)+2}{(3)+1
= 5/4
However, I am unsure how to do this. I've added the relevant code
Code: Select all
\[ \lim_{x\to 3} f(x) \]
=\[ \lim_{x\to 3} \dfrac{x+2}{x+1} \]
=\dfrac{(3)+2}{(3)+1}\\
=\dfrac{5}{4}
Code: Select all
\[ \lim_{x\to 3} f(x) \]
=\[ \lim_{x\to 3} \dfrac{x+2}{x+1} \]
=\dfrac{(3)+2}{(3)+1}\\
=\dfrac{5}{4}
NEW: TikZ book now 40% off at Amazon.com for a short time.
Code: Select all
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
\lim_{x\to 3} f(x) & \\
& = \lim_{x\to 3} \dfrac{x+2}{x+1} \\
& =\dfrac{(3)+2}{(3)+1}\\
& =\dfrac{5}{4}
\end{align*}
or maybe
\begin{align*}
\lim_{x\to 3} f(x) & = \lim_{x\to 3} \dfrac{x+2}{x+1} \\
& =\dfrac{(3)+2}{(3)+1}\\
& =\dfrac{5}{4}
\end{align*}
\end{document}
align*
and alternatives.NEW: TikZ book now 40% off at Amazon.com for a short time.