I am found this really nice example layout and I am trying to learn it on my own. The author said he uses LaTeX and I am trying to learn it. My code is below. I am attaching a picture of what I want the page to look like. Any help is appreciated. I am a novice for minipages/fbox and I am not sure if tcolorbox would be better. I have also included my graphic in case.
Thank you,
Nick
Code: Select all
\documentclass{article}\usepackage[utf8]{inputenc}\usepackage[margin=.5in]{geometry}\usepackage{tcolorbox}\usepackage{amsfonts}\usepackage{amsmath}\usepackage{amssymb}\begin{document}\fbox{\begin{minipage}[t][.5cm]{0,4\textwidth}The Squeeze Theorem\end{minipage}}\qquad\fbox{\begin{minipage}[t][.5cm]{0,6\textwidth}Name:\end{minipage}}\vspace{.25in}\fbox{\begin{minipage}[t][6cm]{0,9\textwidth}On the grid below, graph $f(x)=x^2,g(x)=x^2\cos\Big(\dfrac{1}{3}\Big)$, and $h(x)=-x^2$. You may use a calculator, but make sure it is in radian mode.\includegraphics[width=2in]{graph1.png}\fbox{\begin{minipage}[t][4cm]{0,3\textwidth}What is $\displaystyle{\lim{x\to 0}\cos\Big(\dfrac{1}{x^3}\Big)}$?\end{minipage}}\end{minipage}}\vspace{1in}\fbox{\begin{minipage}[t][4cm]{0,9\textwidth}Suppose that $x-3\leq f(x)\leq x^2+3x-2$ for all $x$. What is $\displaystyle{\lim_{x\to -1}f(x)}$?\end{minipage}}\vspace{.25in}\fbox{\begin{minipage}[t][4cm]{0,9\textwidth}Use the Squeeze theorem to evaluate $\displaystyle{\lim_{x\to 0}x^4\sin\Big(\dfrac{1}{x^2+1}\big)}$\end{minipage}}