## LaTeX forum ⇒ General ⇒ problems compiling a document of latex

LaTeX specific issues not fitting into one of the other forums of this category.
juan21
Posts: 11
Joined: Thu Dec 03, 2015 12:20 am

### problems compiling a document of latex

Good afternoon , I am presenting problems to compile a latex document I can not compile either a set of equations
sending the attached document , the error is on page 37 of adobe, the syntax of the set of equations is the following thank you in advance Help
\item[3c] Si $p=\infty$, entonces $q=1$ y se tiene lo siguiente    \begin{align*}      \int_{a}^{b}|s_4(x)|\,dx &= -\frac{1}{24}\int_{a}^{\frac{a+b}{2}} (x-a)^3\left(x-\frac{a+2b}{3}\right)\,dx - \frac{1}{24}\int_{\frac{a+b}{2}}^{b} (x-b)^3\left(x-\frac{2a+b}{3}\right)\,dx\\       &=-\frac{1}{24}\left[\int_{a}^{\frac{a+b}{2}}(x^3-3ax^2+3a^2x-a^3)\left(x-\frac{a+2b}{3}\right)\,dx\right.\\       &\left.+\int_{\frac{a+b}{2}}^{b}(x^3-3bx^2+3b^2x-b^3)\left(x-\frac{2a+b}{3}\right)\,dx\right]\\       &=-\frac{1}{24}\left[\int_{a}^{\frac{a+b}{2}}\left[x^4-3ax^3+3a^2x^2-a^3x-x^3\left(\frac{a+2b}{3}\right)\right.\right.\\       &\left.+ax^2(a+2b)-a^2x(a+2b)+\frac{a^3}{3}(a+2b)\right]\,dx\\       +\left.\int_{\frac{a+b}{2}}^{b}\left[x^4-3bx^3+3b^2x^2-b^3x - \frac{x^3}{3}(2a+b)+bx^2(2a+b)-b^2x(2a+b)+\frac{b^3}{3}(2a+b)\right]\,dx\right]\\       &=-\frac{1}{24}\left[\frac{x^5}{5}-\frac{3}{4}ax^4+a^2x^3-\frac{a^3x^2}{2}-\frac{x^4}{12}(a+2b)+\frac{ax^3}{3}(a+2b)-\frac{a^2x^2}{2}\right.\\       &\left.\left.+\frac{a^3}{3}(a+2b)x\right]\right|_a^{\frac{a+b}{2}}-\frac{1}{24}\left[\frac{x^5}{5}-\frac{3}{4}bx^4+b^2x^3-\frac{b^3x^2}{2}-\frac{x^4}{12}(2a+b)\right.\\       &\left.\left.+\frac{bx^3}{3}(2a+b)-\frac{b^2x^2}{2}+\frac{b^3}{3}(2a+b)x\right]\right|_{\frac{a+b}{2}}^{b}\\       &=-\frac{1}{24}\left[\frac{1}{5}\left(\frac{a+b}{2}\right)^5-\frac{3a}{4}\left(\frac{a+b}{2}\right)^4+a^2\left(\frac{a+b}{2}\right)^3-\frac{a^3}{2}\left(\frac{a+b}{2}\right)^2\right.\\       &-\frac{1}{12}\left(\frac{a+b}{2}\right)^4(a+2b)+\frac{a}{3}\left(\frac{a+b}{2}\right)^3(a+2b)-\frac{a^2}{2}\left(\frac{a+b}{2}\right)^2(a+2b)\\       &+\frac{a^3}{3}(a+2b)\left(\frac{a+b}{2}\right)-\frac{a^5}{5}+\frac{3}{4}a^5-a^5+\frac{a^5}{2}+\frac{a^4}{12}(a+2b)-\frac{a^4}{3}(a+2b)\\       &+\frac{a^4}{2}(a+2b)-\frac{a^4}{3}(a+2b)\\       &+\frac{b^5}{5}-\frac{3}{4}b^5+b^5-\frac{b^5}{2}^-\frac{b^4}{12}(2a+b)+\frac{b^4}{3}(2a+b)-\frac{b^4}{2}(2a+b)+\frac{b^4}{3}(2a+b)\\       &-\frac{1}{5}\left(\frac{a+b}{2}\right)^5+\frac{3b}{4}\left(\frac{a+b}{2}\right)^4-b^2\left(\frac{a+b}{2}\right)^3+\frac{b^3}{2}\left(\frac{a+b}{2}\right)^2\\       &\left.+\frac{1}{12}\left(\frac{a+b}{2}\right)^4(2a+b)-\frac{b}{3}\left(\frac{a+b}{2}\right)^3(2a+b)+\frac{b^2}{2}\left(\frac{a+b}{2}\right)^2(2a+b)-\frac{b^3}{3}(2a+b)\left(\frac{a+b}{2}\right)\right]\\      &=-\frac{1}{24}\left[\frac{b^5-a^5}{20}+\frac{1}{12}(b^5-a^5+2ab^4-2ba^4)+2\left(\frac{a+b}{2}\right)^4(b-a)\right.\\       &\left.+\frac{4}{3}(a^2-b^2)\left(\frac{a+b}{2}\right)^3+\left(\frac{a+b}{2}\right)^2[b^3-a^3+b^2a-a^2b]+\left(\frac{a+b}{2}\right)\left(\frac{a^3}{3}(a+2b)-\frac{b^3}{3}(2a+b)\right)\right]\\    \end{align*}
Attachments
Maestro.pdf

Johannes_B
Site Moderator
Posts: 4044
Joined: Thu Nov 01, 2012 4:08 pm
This can't compile, documentclass and the document-environment are missing. Possibly also math packages.
The smart way: Calm down and take a deep breath, read posts and provided links attentively, try to understand and ask if necessary.

juan21
Posts: 11
Joined: Thu Dec 03, 2015 12:20 am
good afternoon had already posted this earlier post Menten , but I miss some things . I am compiling a document and I latex document as shown in the attachment .¿me could help with equations ? The sintexix is as follows

\documentclass[12pt,oneside,letterpaper]{report}\usepackage{amssymb,amsthm}\usepackage[spanish,english]{babel}\usepackage{amssymb,amsfonts}\usepackage{amsmath}\usepackage{amscd}\usepackage[letterpaper,left=35mm,right=23mm]{geometry}\usepackage{fancyhdr}\usepackage{fancyhdr,endnotes}\usepackage{multicol}\usepackage{cite}%\usepackage[sort&compress]{natbib}\usepackage{}%\usepackage[dvips]{graphicx}  \pagestyle{fancy} \usepackage{algorithm}%\usepackage{algorithmic}%\usepackage{epsf,graphicx}\usepackage{graphics,graphicx,psfrag}\usepackage[ansinew]{inputenc}\usepackage{float}\usepackage{subfigure}  \floatplacement{figure}{ht}\usepackage{color}\usepackage{amssymb,amsthm}\usepackage[spanish,english]{babel}\usepackage{amssymb,amsfonts}\usepackage{amsmath}\usepackage{amscd}\usepackage[letterpaper,left=35mm,right=23mm]{geometry}\usepackage{fancyhdr}\usepackage{fancyhdr,endnotes}\usepackage{multicol}\usepackage{cite}%\usepackage[sort&compress]{natbib}\usepackage{}%\usepackage[dvips]{graphicx}  \pagestyle{fancy} \usepackage{algorithm}%\usepackage{algorithmic}%\usepackage{epsf,graphicx}\usepackage{graphics,graphicx,psfrag}\usepackage[ansinew]{inputenc}\usepackage{float}\usepackage{subfigure}  \floatplacement{figure}{ht}\usepackage{color}\usepackage{amssymb,amsthm}\usepackage[spanish,english]{babel}\usepackage{amssymb,amsfonts}\usepackage{amsmath}\usepackage{amscd}\usepackage[letterpaper,left=35mm,right=23mm]{geometry}\usepackage{fancyhdr}\usepackage{fancyhdr,endnotes}\usepackage{multicol}\usepackage{cite}%\usepackage[sort&compress]{natbib}\usepackage{}%\usepackage[dvips]{graphicx}  \pagestyle{fancy} \usepackage{algorithm}%\usepackage{algorithmic}%\usepackage{epsf,graphicx}\usepackage{graphics,graphicx,psfrag}\usepackage[ansinew]{inputenc}\usepackage{float}\usepackage{subfigure}  \floatplacement{figure}{ht}\usepackage{color}\begin{document}\begin{align*}      \int_{a}^{b}|s_4(x)|\,dx &= -\frac{1}{24}\int_{a}^{\frac{a+b}{2}} (x-a)^3\left(x-\frac{a+2b}{3}\right)\,dx - \frac{1}{24}\int_{\frac{a+b}{2}}^{b} (x-b)^3\left(x-\frac{2a+b}{3}\right)\,dx\\       &=-\frac{1}{24}\left[\int_{a}^{\frac{a+b}{2}}(x^3-3ax^2+3a^2x-a^3)\left(x-\frac{a+2b}{3}\right)\,dx\right.\\       &\left.+\int_{\frac{a+b}{2}}^{b}(x^3-3bx^2+3b^2x-b^3)\left(x-\frac{2a+b}{3}\right)\,dx\right]\\       &=-\frac{1}{24}\left[\int_{a}^{\frac{a+b}{2}}\left[x^4-3ax^3+3a^2x^2-a^3x-x^3\left(\frac{a+2b}{3}\right)\right.\right.\\       &\left.+ax^2(a+2b)-a^2x(a+2b)+\frac{a^3}{3}(a+2b)\right]\,dx\\       +\left.\int_{\frac{a+b}{2}}^{b}\left[x^4-3bx^3+3b^2x^2-b^3x - \frac{x^3}{3}(2a+b)+bx^2(2a+b)-b^2x(2a+b)+\frac{b^3}{3}(2a+b)\right]\,dx\right]\\       &=-\frac{1}{24}\left[\frac{x^5}{5}-\frac{3}{4}ax^4+a^2x^3-\frac{a^3x^2}{2}-\frac{x^4}{12}(a+2b)+\frac{ax^3}{3}(a+2b)-\frac{a^2x^2}{2}\right.\\       &\left.\left.+\frac{a^3}{3}(a+2b)x\right]\right|_a^{\frac{a+b}{2}}-\frac{1}{24}\left[\frac{x^5}{5}-\frac{3}{4}bx^4+b^2x^3-\frac{b^3x^2}{2}-\frac{x^4}{12}(2a+b)\right.\\       &\left.\left.+\frac{bx^3}{3}(2a+b)-\frac{b^2x^2}{2}+\frac{b^3}{3}(2a+b)x\right]\right|_{\frac{a+b}{2}}^{b}\\       &=-\frac{1}{24}\left[\frac{1}{5}\left(\frac{a+b}{2}\right)^5-\frac{3a}{4}\left(\frac{a+b}{2}\right)^4+a^2\left(\frac{a+b}{2}\right)^3-\frac{a^3}{2}\left(\frac{a+b}{2}\right)^2\right.\\       &-\frac{1}{12}\left(\frac{a+b}{2}\right)^4(a+2b)+\frac{a}{3}\left(\frac{a+b}{2}\right)^3(a+2b)-\frac{a^2}{2}\left(\frac{a+b}{2}\right)^2(a+2b)\\       &+\frac{a^3}{3}(a+2b)\left(\frac{a+b}{2}\right)-\frac{a^5}{5}+\frac{3}{4}a^5-a^5+\frac{a^5}{2}+\frac{a^4}{12}(a+2b)-\frac{a^4}{3}(a+2b)\\       &+\frac{a^4}{2}(a+2b)-\frac{a^4}{3}(a+2b)\\       &+\frac{b^5}{5}-\frac{3}{4}b^5+b^5-\frac{b^5}{2}^-\frac{b^4}{12}(2a+b)+\frac{b^4}{3}(2a+b)-\frac{b^4}{2}(2a+b)+\frac{b^4}{3}(2a+b)\\       &-\frac{1}{5}\left(\frac{a+b}{2}\right)^5+\frac{3b}{4}\left(\frac{a+b}{2}\right)^4-b^2\left(\frac{a+b}{2}\right)^3+\frac{b^3}{2}\left(\frac{a+b}{2}\right)^2\\       &\left.+\frac{1}{12}\left(\frac{a+b}{2}\right)^4(2a+b)-\frac{b}{3}\left(\frac{a+b}{2}\right)^3(2a+b)+\frac{b^2}{2}\left(\frac{a+b}{2}\right)^2(2a+b)-\frac{b^3}{3}(2a+b)\left(\frac{a+b}{2}\right)\right]\\      &=-\frac{1}{24}\left[\frac{b^5-a^5}{20}+\frac{1}{12}(b^5-a^5+2ab^4-2ba^4)+2\left(\frac{a+b}{2}\right)^4(b-a)\right.\\       &\left.+\frac{4}{3}(a^2-b^2)\left(\frac{a+b}{2}\right)^3+\left(\frac{a+b}{2}\right)^2[b^3-a^3+b^2a-a^2b]+\left(\frac{a+b}{2}\right)\left(\frac{a^3}{3}(a+2b)-\frac{b^3}{3}(2a+b)\right)\right]\\    \end{align*}  \end{document}
Attachments
prueba.pdf

Johannes_B
Site Moderator
Posts: 4044
Joined: Thu Nov 01, 2012 4:08 pm
You can use allowdisplaybreaks[1] to allow displaybreaks. The other thing is, your equations are just too long to fit the page.

\documentclass[12pt,oneside,letterpaper]{report}\usepackage{amssymb,amsthm}\usepackage[spanish,english]{babel}\usepackage{amssymb,amsfonts}\usepackage{amsmath}\usepackage{amscd}\usepackage[letterpaper,left=35mm,right=23mm]{geometry}\usepackage{fancyhdr}\usepackage{fancyhdr,endnotes}\usepackage{multicol}\usepackage{cite}%\usepackage[sort&compress]{natbib}\usepackage{}     %\usepackage[dvips]{graphicx}  \pagestyle{fancy}\setlength{\headheight}{14.5pt} \usepackage{algorithm}     %\usepackage{algorithmic}     %\usepackage{epsf,graphicx}\usepackage{graphics,graphicx,psfrag}\usepackage[ansinew]{inputenc}\usepackage{float}%\usepackage{subfigure}% Deprecated for a decade\floatplacement{figure}{ht}\usepackage{color}\usepackage{amssymb,amsthm}\usepackage[spanish,english]{babel}\usepackage{amssymb,amsfonts}\usepackage{amsmath}\usepackage{amscd}\usepackage[letterpaper,left=35mm,right=23mm]{geometry}\usepackage{fancyhdr}\usepackage{fancyhdr,endnotes}\usepackage{multicol}\usepackage{cite}      %\usepackage[sort&compress]{natbib}  %\usepackage[dvips]{graphicx}  \pagestyle{fancy} \usepackage{algorithm}  %\usepackage{algorithmic}  %\usepackage{epsf,graphicx}\usepackage{graphics,graphicx,psfrag}\usepackage[ansinew]{inputenc}\usepackage{float}\usepackage{subfigure}\floatplacement{figure}{ht}\usepackage{color}\usepackage{amssymb,amsthm}\usepackage[spanish,english]{babel}\usepackage{amssymb,amsfonts}\usepackage{amsmath}\usepackage{amscd}\usepackage[letterpaper,left=35mm,right=23mm]{geometry}\usepackage{fancyhdr}\usepackage{fancyhdr,endnotes}\usepackage{multicol}\usepackage{cite}   %\usepackage[sort&compress]{natbib}\usepackage{}       %\usepackage[dvips]{graphicx}  \pagestyle{fancy} \usepackage{algorithm}       %\usepackage{algorithmic}       %\usepackage{epsf,graphicx}\usepackage{graphics,graphicx,psfrag}\usepackage[ansinew]{inputenc}\usepackage{float}%\usepackage{subfigure}\floatplacement{figure}{ht}\usepackage{color}\begin{document}\allowdisplaybreaks[1]\begin{align*}\int_{a}^{b}|s_4(x)|\,dx &= -\frac{1}{24}\int_{a}^{\frac{a+b}{2}} (x-a)^3\left(x-\frac{a+2b}{3}\right)\,dx - \frac{1}{24}\int_{\frac{a+b}{2}}^{b} (x-b)^3\left(x-\frac{2a+b}{3}\right)\,dx\\&=-\frac{1}{24}\left[\int_{a}^{\frac{a+b}{2}}(x^3-3ax^2+3a^2x-a^3)\left(x-\frac{a+2b}{3}\right)\,dx\right.\\&\left.+\int_{\frac{a+b}{2}}^{b}(x^3-3bx^2+3b^2x-b^3)\left(x-\frac{2a+b}{3}\right)\,dx\right]\\&=-\frac{1}{24}\left[\int_{a}^{\frac{a+b}{2}}\left[x^4-3ax^3+3a^2x^2-a^3x-x^3\left(\frac{a+2b}{3}\right)\right.\right.\\&\left.+ax^2(a+2b)-a^2x(a+2b)+\frac{a^3}{3}(a+2b)\right]\,dx\\&+\left.\int_{\frac{a+b}{2}}^{b}\left[x^4-3bx^3+3b^2x^2-b^3x - \frac{x^3}{3}(2a+b)+bx^2(2a+b)-b^2x(2a+b)+\frac{b^3}{3}(2a+b)\right]\,dx\right]\\&=-\frac{1}{24}\left[\frac{x^5}{5}-\frac{3}{4}ax^4+a^2x^3-\frac{a^3x^2}{2}-\frac{x^4}{12}(a+2b)+\frac{ax^3}{3}(a+2b)-\frac{a^2x^2}{2}\right.\\&\left.\left.+\frac{a^3}{3}(a+2b)x\right]\right|_a^{\frac{a+b}{2}}-\frac{1}{24}\left[\frac{x^5}{5}-\frac{3}{4}bx^4+b^2x^3-\frac{b^3x^2}{2}-\frac{x^4}{12}(2a+b)\right.\\&\left.\left.+\frac{bx^3}{3}(2a+b)-\frac{b^2x^2}{2}+\frac{b^3}{3}(2a+b)x\right]\right|_{\frac{a+b}{2}}^{b}\\&=-\frac{1}{24}\left[\frac{1}{5}\left(\frac{a+b}{2}\right)^5-\frac{3a}{4}\left(\frac{a+b}{2}\right)^4+a^2\left(\frac{a+b}{2}\right)^3-\frac{a^3}{2}\left(\frac{a+b}{2}\right)^2\right.\\&-\frac{1}{12}\left(\frac{a+b}{2}\right)^4(a+2b)+\frac{a}{3}\left(\frac{a+b}{2}\right)^3(a+2b)-\frac{a^2}{2}\left(\frac{a+b}{2}\right)^2(a+2b)\\&+\frac{a^3}{3}(a+2b)\left(\frac{a+b}{2}\right)-\frac{a^5}{5}+\frac{3}{4}a^5-a^5+\frac{a^5}{2}+\frac{a^4}{12}(a+2b)-\frac{a^4}{3}(a+2b)\\&+\frac{a^4}{2}(a+2b)-\frac{a^4}{3}(a+2b)\\&+\frac{b^5}{5}-\frac{3}{4}b^5+b^5-\frac{b^5}{2}^-\frac{b^4}{12}(2a+b)+\frac{b^4}{3}(2a+b)-\frac{b^4}{2}(2a+b)+\frac{b^4}{3}(2a+b)\\&-\frac{1}{5}\left(\frac{a+b}{2}\right)^5+\frac{3b}{4}\left(\frac{a+b}{2}\right)^4-b^2\left(\frac{a+b}{2}\right)^3+\frac{b^3}{2}\left(\frac{a+b}{2}\right)^2\\&\left.+\frac{1}{12}\left(\frac{a+b}{2}\right)^4(2a+b)-\frac{b}{3}\left(\frac{a+b}{2}\right)^3(2a+b)+\frac{b^2}{2}\left(\frac{a+b}{2}\right)^2(2a+b)-\frac{b^3}{3}(2a+b)\left(\frac{a+b}{2}\right)\right]\\&=-\frac{1}{24}\left[\frac{b^5-a^5}{20}+\frac{1}{12}(b^5-a^5+2ab^4-2ba^4)+2\left(\frac{a+b}{2}\right)^4(b-a)\right.\\&\left.+\frac{4}{3}(a^2-b^2)\left(\frac{a+b}{2}\right)^3+\left(\frac{a+b}{2}\right)^2[b^3-a^3+b^2a-a^2b]+\left(\frac{a+b}{2}\right)\left(\frac{a^3}{3}(a+2b)-\frac{b^3}{3}(2a+b)\right)\right]\\\end{align*}  \end{document}                \documentclass[]{article}\usepackage{mathtools}\allowdisplaybreaks[1]\begin{document}%    \item[3c] Si $p=\infty$, entonces $q=1$ y se tiene lo siguiente     \begin{align*}     \int_{a}^{b}|s_4(x)|\,dx &= -\frac{1}{24}\int_{a}^{\frac{a+b}{2}} (x-a)^3\left(x-\frac{a+2b}{3}\right)\,dx - \frac{1}{24}\int_{\frac{a+b}{2}}^{b} (x-b)^3\left(x-\frac{2a+b}{3}\right)\,dx\\     &=-\frac{1}{24}\left[\int_{a}^{\frac{a+b}{2}}(x^3-3ax^2+3a^2x-a^3)\left(x-\frac{a+2b}{3}\right)\,dx\right.\\     &\left.+\int_{\frac{a+b}{2}}^{b}(x^3-3bx^2+3b^2x-b^3)\left(x-\frac{2a+b}{3}\right)\,dx\right]\\     &=-\frac{1}{24}\left[\int_{a}^{\frac{a+b}{2}}\left[x^4-3ax^3+3a^2x^2-a^3x-x^3\left(\frac{a+2b}{3}\right)\right.\right.\\     &\left.+ax^2(a+2b)-a^2x(a+2b)+\frac{a^3}{3}(a+2b)\right]\,dx\\     &+\left.\int_{\frac{a+b}{2}}^{b}\left[x^4-3bx^3+3b^2x^2-b^3x - \frac{x^3}{3}(2a+b)+bx^2(2a+b)-b^2x(2a+b)+\frac{b^3}{3}(2a+b)\right]\,dx\right]\\     &=-\frac{1}{24}\left[\frac{x^5}{5}-\frac{3}{4}ax^4+a^2x^3-\frac{a^3x^2}{2}-\frac{x^4}{12}(a+2b)+\frac{ax^3}{3}(a+2b)-\frac{a^2x^2}{2}\right.\\     &\left.\left.+\frac{a^3}{3}(a+2b)x\right]\right|_a^{\frac{a+b}{2}}-\frac{1}{24}\left[\frac{x^5}{5}-\frac{3}{4}bx^4+b^2x^3-\frac{b^3x^2}{2}-\frac{x^4}{12}(2a+b)\right.\\     &\left.\left.+\frac{bx^3}{3}(2a+b)-\frac{b^2x^2}{2}+\frac{b^3}{3}(2a+b)x\right]\right|_{\frac{a+b}{2}}^{b}\\     &=-\frac{1}{24}\left[\frac{1}{5}\left(\frac{a+b}{2}\right)^5-\frac{3a}{4}\left(\frac{a+b}{2}\right)^4+a^2\left(\frac{a+b}{2}\right)^3-\frac{a^3}{2}\left(\frac{a+b}{2}\right)^2\right.\\     &-\frac{1}{12}\left(\frac{a+b}{2}\right)^4(a+2b)+\frac{a}{3}\left(\frac{a+b}{2}\right)^3(a+2b)-\frac{a^2}{2}\left(\frac{a+b}{2}\right)^2(a+2b)\\     &+\frac{a^3}{3}(a+2b)\left(\frac{a+b}{2}\right)-\frac{a^5}{5}+\frac{3}{4}a^5-a^5+\frac{a^5}{2}+\frac{a^4}{12}(a+2b)-\frac{a^4}{3}(a+2b)\\     &+\frac{a^4}{2}(a+2b)-\frac{a^4}{3}(a+2b)\\     &+\frac{b^5}{5}-\frac{3}{4}b^5+b^5-\frac{b^5}{2}^-\frac{b^4}{12}(2a+b)+\frac{b^4}{3}(2a+b)-\frac{b^4}{2}(2a+b)+\frac{b^4}{3}(2a+b)\\     &-\frac{1}{5}\left(\frac{a+b}{2}\right)^5+\frac{3b}{4}\left(\frac{a+b}{2}\right)^4-b^2\left(\frac{a+b}{2}\right)^3+\frac{b^3}{2}\left(\frac{a+b}{2}\right)^2\\     &\left.+\frac{1}{12}\left(\frac{a+b}{2}\right)^4(2a+b)-\frac{b}{3}\left(\frac{a+b}{2}\right)^3(2a+b)+\frac{b^2}{2}\left(\frac{a+b}{2}\right)^2(2a+b)-\frac{b^3}{3}(2a+b)\left(\frac{a+b}{2}\right)\right]\\     &=-\frac{1}{24}\left[\frac{b^5-a^5}{20}+\frac{1}{12}(b^5-a^5+2ab^4-2ba^4)+2\left(\frac{a+b}{2}\right)^4(b-a)\right.\\     &\left.+\frac{4}{3}(a^2-b^2)\left(\frac{a+b}{2}\right)^3+\left(\frac{a+b}{2}\right)^2[b^3-a^3+b^2a-a^2b]+\left(\frac{a+b}{2}\right)\left(\frac{a^3}{3}(a+2b)-\frac{b^3}{3}(2a+b)\right)\right]\\     \end{align*}     \end{document}
The smart way: Calm down and take a deep breath, read posts and provided links attentively, try to understand and ask if necessary.