
Here's a MWE to show the problem :
Code: Select all
\documentclass[12pt,letterpaper,twoside]{book}
\usepackage{lmodern}
\usepackage{amsmath}
\usepackage{tensor}
\begin{document}
\begin{equation}
I =
\begin{cases}
\, \displaystyle{\frac{1}{2} \; A \smash{\left( \tensor{t}{_0} + \alpha - \frac{\beta}{\displaystyle{\sqrt{2 \alpha \, \smash{\tensor{t}{_0} + t_0^2}}}} \, \right)}}, &\text{if $k = - 1$.} \\[18pt]
\, \displaystyle{\frac{2}{3} \; A \, \tensor{t}{_0}}, &\text{if $k = 0$.} \\[18pt]
\, \displaystyle{\frac{1}{2} \; A \smash{\left( \tensor{t}{_0} - \alpha + \frac{\beta}{\displaystyle{\sqrt{2 \alpha \, \tensor{t}{_0} - t_0^2}}} \, \right)}}, &\text{if $k = + 1$.}
\end{cases}
\end{equation}
\end{document}
Take note that smashing each "0" index separately doesn't change anything.
How can I lower the "2" exponent in the first line ?