\documentclass{article}
\usepackage[english]{babel}
\usepackage[margin=1in]{geometry}
\usepackage{multicol}
\usepackage{background}
\usepackage[math]{blindtext}% just to generate filler text
\SetBgScale{4}
\SetBgColor{gray}
\SetBgAngle{90}
\SetBgContents{arXiv: some other text goes here}
\SetBgPosition{-1.5,-10}
\begin{document}
{\centering
{\bfseries\Large Evidence for spatial variation of the fine structure constant\bigskip}
J. K. Webb\textsuperscript{1} , J. A. King\textsuperscript{2} , M. T. Murphy\textsuperscript{2} , V. V. Flambaum1 , R. F. Carswell\textsuperscript{3} , and M. B. Bainbridge\textsuperscript{1} \\
{\itshape
\textsuperscript{1}School of Physics, University of New South Wales, Sydney, NSW 2052, Australia \\
\textsuperscript{2}Centre for Astrophysics and Supercomputing, Swinburne University of Technology, \\
Mail H39, PO Box 218, Victoria 3122, Australia and \\
\textsuperscript{3} Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, England. \\
\normalfont (Dated: August 25, 2010)
}
}
\begin{abstract}
We previously reported observations of quasar spectra from the Keck telescope suggesting a smaller value of the fine structure constant, α, at high redshift. A new sample of $153$ measurements from the ESO Very Large Telescope (VLT), probing a different direction in the universe, also depends on redshift, but in the opposite sense, that is, α appears on average to be larger in the past. The combined dataset is well represented by a spatial dipole, significant at the 4.1σ level, in the direction right ascension $17.3 \pm 0.6$ hours, declination $−61 \pm 9$ degrees. A detailed analysis for systematics,
using observations duplicated at both telescopes, reveals none which are likely to emulate this result.
\bigskip
\noindent PACS numbers: 06.20.Jr, 95.30.Dr, 95.30.Sf, 98.62.Ra, 98.80.-k, 98.80.Es, 98.80.Jk
\end{abstract}
\begin{multicols}{2}
% the article contents goes here