I'm trying to make a reference sheet of integrals, but I can't format them in a table without the symbols being truncated (as if I coded them within text).
I'm sort of new to LaTex in general, but here is the current code. Within the table are the truncated integrals, and after the table are more integrals that are formatted to look how I want them to, just not in a table.
Code: Select all
\documentclass[20pt]{amsart}
\usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots.
\geometry{letterpaper} % ... or a4paper or a5paper or ...
%\geometry{landscape} % Activate for for rotated page geometry
\usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent
\usepackage{array}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{epstopdf}
\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png}
\title{Circular Integrals}
\author{Some Name}
%\date{} % Activate to display a given date or no date
\begin{document}
\maketitle
%\section{}
%\subsection{}
\begin{tabular}{l r}
$\int \sin udu= -\cos u + C \quad \quad$ & $\int \cos udu= \sin u +C$ \\
$\int \tan udu= \ln \left|\sec u \right| + C \quad \quad$ & $\int \cot udu= \ln |\sin u | + C$ \\
$\int \csc udu= \ln |\csc u - \cot u | + C \quad \quad$ & $\int \sec udu= \ln |\sec u + \tan u | + C$ \\
$\int \sec^2 udu= \tan u + C \quad \quad$ & $\int \csc^2 udu= -\cot u = C$ \\
$\int \sec u \tan udu= \sec u + C \quad \quad$ & $\int \csc u \cot udu= -\csc u + C$ \\
\end{tabular}
\\
\\
\\
$$\int \frac{1}{\sqrt{1-u^2}}du=\sin^{-1}u + C \quad \quad \int \frac{1}{u^2+1}du=\tan^{-1}u + C$$
$$\int \frac{1}{|u|\sqrt{u^2-1}}du=\sec^{-1}u + C$$
\\
$$\int \sin^{-1} udu = \sqrt{1-u^2} + u\sin^{-1} u + C \quad \quad \int \cos^{-1} udu = u \cos^{-1}u - \sqrt{1-u^2} + C$$
$$\int \tan^{-1} udu = u \tan^{-1}u - \frac{1}{2}\ln{\left(u^2+1\right)} + C \quad \quad \int \cot^{-1} udu = u\cot^{-1}u + \frac{1}{2}\ln{\left(u^2+1\right)} + C$$
$$\int \csc^{-1} udu = -u\csc^{-1}u-\ln\left(\sqrt{u^2-1}-|u|\right) + C \quad \quad \int \sec^{-1} udu = u\sec^{-1}u + \ln\left(\sqrt{u^2-1}-|u|\right) + C$$
\end{document}
Thanks.