Writing a compendium in basic Linear Algebra with LaTeX I encountered a serious problem trying to code Gauss-Jordan elimination. The best thing I could come up with follows below, however I am very miss-pleased with this. I would like to get something more compact with smaller matrices. My problem was I don't know how to implement those rings indicating row-operations. I appreciate all comments and suggestions on how to improve the result.
All the best
Paul
Code: Select all
$$
\begin{xy}
*!C\xybox{\xymatrix{
1 & 1 & 1 &^{} \ar@{-}[dd]&3\\ 2 & 4 & 6&&4 \\ 20 & 26 & 28 &&4
}\POS="matrix"
,"matrix"!L*\frm{(},"matrix"!R*\frm{)},"1,5"+/r.2cm/,\xymatrix @C-2pc{{}&\circled{-2} \ar[dl]&\circled{-20} \ar[ddll]\\
{}&&\\
&&&}}
\end{xy}
\hskip 10 pt \sim\hskip 10 pt
\begin{xy}
*!C\xybox{\xymatrix{
1 & 1 & 1 &^{} \ar@{-}[dd]&3\\ 0 & 2 & 4&&-2 \\ 0 & 6 & 8 &&-56
}\POS="matrix"
,"matrix"!L*\frm{(},"matrix"!R*\frm{)},"1,5"+/r.8cm/,\xymatrix {{}\\
\times \frac{1}{2}\\
{}}}
\end{xy}\hskip 10 pt \sim
$$
$$
\begin{xy}
*!C\xybox{\xymatrix{
1 & 1 & 1 &^{} \ar@{-}[dd]&3\\ 0 & 1& 2&&-1 \\ 0 & 6 & 8 &&-56
}\POS="matrix"
,"matrix"!L*\frm{(},"matrix"!R*\frm{)},"1,5"+/r.5cm/,\xymatrix @C-2pc{{}&&&\\&\circled{-1} \ar[ul]&\circled{-6} \ar[dll]\\
{}&&
}}
\end{xy}
\hskip 10 pt \sim\hskip 10 pt
\begin{xy}
*!C\xybox{\xymatrix{
1 & 0 & -1 &^{} \ar@{-}[dd]&4\\ 0 & 1& 2&&-1 \\ 0 & 0 & -4 &&-50
}\POS="matrix"
,"matrix"!L*\frm{(},"matrix"!R*\frm{)},"1,5"+/r1.0cm/,\xymatrix {{}\\
{}\\
\times -\frac{1}{4}
}}
\end{xy}
\hskip 10 pt \sim
$$
$$
\begin{xy}
*!C\xybox{\xymatrix{
1 & 0 & -1 &^{} \ar@{-}[dd]&4\\ 0 & 1& 2&&-1 \\ 0 & 0 & 1 &&\frac{25}{2}
}\POS="matrix"
,"matrix"!L*\frm{(},"matrix"!R*\frm{)},"1,5"+/r.5cm/,\xymatrix @C-2pc{{}&&\\&&\\
&\circled{-2} \ar[ul]&\circled{1} \ar[uull]
}}
\end{xy}
\hskip 10 pt \sim\hskip 10 pt
\begin{xy}
*!C\xybox{\xymatrix{
1 & 0 & 0 &^{} \ar@{-}[dd]&\frac{33}{2}\\ 0 & 1& 0&&-26 \\ 0 & 0 & 1 &&\frac{25}{2}
}\POS="matrix"
,"matrix"!L*\frm{(},"matrix"!R*\frm{)}}
\end{xy}
$$