Code: Select all
\documentclass{beamer}
\usepackage{beamerthemesplit}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\newtheorem{lem}{Lemma}[section]
\newtheorem{thm}[lem]{Theorem}
\newtheorem{exm}[lem]{Example}
\begin{document}
\frame
{
\begin{itemize}
\item<1-> \begin{lem}
Let $A = (a_{ij}) \in M_{n}$ and suppose $A \geq O.$ If the row sums of $A$ are all greater than zero (that is, $\sum\limits_{j = 1}^{n} a_{ij} > 0$ for all $i = 1,2,\ldots,n$), then $\rho(A) > 0,$ and in particular, we have that $\rho(A) > 0$ if $A > O$ or $A$ is non-negative and irreducible.
\end{lem}
\end{itemize}
}
\end{document}
Code: Select all
\newtheorem{lem}{Lemma}[section]