I'm having trouble working with equations that are in a table. I have used the ctable environment.
I have a table with four columns and many rows. The second column contains equations and the other three are text.
I had initially used the $$ math environment, but had to switch to the align* environment because some of the equations require multiple lines. The problem here is that none of the actual alignment options work in the tabular environment. All of the equations are aligned to the left and the spacing in between them is horrible. Furthermore, it seems that the specified column width (p{.4/textwidth} for the equation column isn't respected... though this may be a figment of my imagination. Also, it doesn't seem that I can control the vertical spacing or alignment of the equations.
\documentclass[10pt,a3paper]{article}
\usepackage[a3paper]{geometry}
\usepackage{fullpage}
\usepackage{ifpdf}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{natbib}
\usepackage{SIunits}
\usepackage{graphicx}
%\usepackage{rotating}
\usepackage{ctable}
%\usepackage{mathptmx}
\usepackage{amsmath}
\usepackage{array}
\bibpunct[; ]{(}{)}{,}{a}{}{;}
\title{SVI}
\author{Josh Gray}
\date{\today}
\ifpdf
\pdfinfo {
/Author (Jack Montana)
/Title (SVI)
/Keywords ()
/CreationDate (D:20071215211307)
}
\fi
\begin{document}
%\maketitle
%==============================
\section{The Indices}
%\begin{sidewaystable}
\begin{table}[ht]
\caption{Commonly used spectral vegetation indices (SVI) and their associated references. Attention should be paid to the sensor(s) used to develop the indices as band spectral responses differ for various sensors. Spectral reflectance ranges are labeled with their common names as opposed to a wavelength range for clarity.}
\begin{tabular}{p{.15\textwidth} p{.4\textwidth} p{.25\textwidth} p{.2\textwidth}}
\toprule
\footnotesize
SVI & Equation & Notes & References \\
\toprule
Simple Ratio Vegetation Index & \begin{align*}\textrm{SRVI}=\frac{\rho_{\textrm{nir}}}{\rho_{\textrm{red}}}\end{align*} & Also known as the Ratio Vegetation Index (RVI) &\cite{Jordan:1969rm} \\
Perpendicular Vegetation Index & \begin{align*}\textrm{PVI}=\frac{1}{\sqrt{\alpha^2+1}}((\rho_{\textrm{nir}}-\alpha)(\rho_{\textrm{red}}-\beta))\end{align*} & $\alpha$ and $\beta$ are the slope and interslope of the soil-line in red/nir space & \cite{Richardson:1977ay} \\
Normalized Difference Vegetation Index & \begin{align*}\textrm{NDVI}=\frac{\rho_{\textrm{nir}}-\rho_{\textrm{red}}}{\rho_{\textrm{nir}}+\rho_{\textrm{red}}}\end{align*} & Note & \cite{Rouse:1973tw} \\
Soil Adjusted Vegetation Index & \begin{align*}\textrm{SAVI}=(1+L)\frac{\rho_{\textrm{nir}}-\rho_{\textrm{red}}}{\rho_{\textrm{nir}}+\rho_{\textrm{red}}+L}\end{align*} & The constant L is inversely correlated with LAI; 0.25 to 1 is a reasonable range & \cite{Huete:1988zl} \\
Transformed Soil Adjusted Vegetation Index & \begin{align*}\textrm{TSAVI}=\frac{\alpha((\rho_{\textrm{nir}}-\alpha)(\rho_{\textrm{red}}-\beta))}{\alpha\rho_{\textrm{nir}}+\rho_{\textrm{red}}-\alpha\beta+\chi(1+\alpha^2)}\end{align*} & $\alpha$ and $\beta$ are as defined for PVI, $\chi$ is the negative abscissa of a point on the soil line $S$ & \cite{Baret:1989zh, Baret:1991rb} \\
Atmospherically Resistant Vegetation Index & \begin{align*}\textrm{ARVI}=\frac{\rho_{\textrm{nir}}-\rho_{\textrm{rb}}}{\rho_{\textrm{nir}}+\rho_{\textrm{rb}}} \\ \rho_{\textrm{rb}}=\rho_{\textrm{red}}-\gamma(\rho_{\textrm{blue}}-\rho_{\textrm{red}})\end{align*} & $\gamma$ is dependent upon surface and atmospheric conditions; $\gamma=1$ is a good choice for most situations & \cite{Kaufman:1992kk} \\
Modified Soil Adjusted Vegetation Index & \begin{align*}\textrm{MSAVI}_1=(1+L)\frac{\rho_{\textrm{nir}}-\rho_{\textrm{red}}}{\rho_{\textrm{nir}}+\rho_{\textrm{red}}+L} \\ L = 1-2\gamma\textrm{NDVI}\cdot\textrm{WDVI} \\ \textrm{MSAVI}_2=\frac{2\rho_{\textrm{nir}}+1-\sqrt{(2\rho_{\textrm{nir}}+1)^2-8(\rho_{\textrm{nir}}-\rho_{\textrm{red}})}}{2}\end{align*} & This is a modification of SAVI to include a functional $L$; $\gamma$ is the slope of the soil line; $\textrm{MSAVI}_1$ uses an empirical approach to estimating $L$ whereas $\textrm{MSAVI}_2$ uses and inductive approach & \cite{Qi:1994bs} \\
\bottomrule
\end{tabular}
%\end{sidewaystable}
\end{table}
\begin{table}[ht]
\caption{Commonly used spectral vegetation indices (SVI) and their associated references. Attention should be paid to the sensor(s) used to develop the indices as band spectral responses differ for various sensors. Spectral reflectance ranges are labeled with their common names as opposed to a wavelength range for clarity.}
\begin{tabular}{p{.15\textwidth} >{$\displaystyle}p{.4\textwidth}<{$} p{.25\textwidth} p{.2\textwidth}}
\toprule\\
\footnotesize SVI & \text{Equation} & Notes & References \\
\toprule
Simple Ratio Vegetation Index & \textrm{SRVI}=\frac{\rho_{\textrm{nir}}}{\rho_{\textrm{red}}}& Also known as the Ratio Vegetation Index (RVI) &\cite{Jordan:1969rm} \\
Perpendicular Vegetation Index & \textrm{PVI}=\frac{1}{\sqrt{\alpha^2+1}}((\rho_{\textrm{nir}}-\alpha)(\rho_{\textrm{red}}-\beta)) & $\alpha$ and $\beta$ are the slope and interslope of the soil-line in red/nir space & \cite{Richardson:1977ay} \\
Normalized Difference Vegetation Index & \textrm{NDVI}=\frac{\rho_{\textrm{nir}}-\rho_{\textrm{red}}}{\rho_{\textrm{nir}}+\rho_{\textrm{red}}} & Note & \cite{Rouse:1973tw} \\
Soil Adjusted Vegetation Index & \textrm{SAVI}=(1+L)\frac{\rho_{\textrm{nir}}-\rho_{\textrm{red}}}{\rho_{\textrm{nir}}+\rho_{\textrm{red}}+L} & The constant L is inversely correlated with LAI; 0.25 to 1 is a reasonable range & \cite{Huete:1988zl} \\
Transformed Soil Adjusted Vegetation Index & \textrm{TSAVI}=\frac{\alpha((\rho_{\textrm{nir}}-\alpha)(\rho_{\textrm{red}}-\beta))}{\alpha\rho_{\textrm{nir}}+\rho_{\textrm{red}}-\alpha\beta+\chi(1+\alpha^2)} & $\alpha$ and $\beta$ are as defined for PVI, $\chi$ is the negative abscissa of a point on the soil line $S$ & \cite{Baret:1989zh, Baret:1991rb} \\
Atmospherically Resistant Vegetation Index & \begin{aligned}[t]\textrm{ARVI}&=\frac{\rho_{\textrm{nir}}-\rho_{\textrm{rb}}}{\rho_{\textrm{nir}}+\rho_{\textrm{rb}}} \\ \rho_{\textrm{rb}}&=\rho_{\textrm{red}}-\gamma(\rho_{\textrm{blue}}-\rho_{\textrm{red}})\end{aligned} & $\gamma$ is dependent upon surface and atmospheric conditions; $\gamma=1$ is a good choice for most situations & \cite{Kaufman:1992kk} \\
Modified Soil Adjusted Vegetation Index & \begin{aligned}[t]\textrm{MSAVI}_1&=(1+L)\frac{\rho_{\textrm{nir}}-\rho_{\textrm{red}}}{\rho_{\textrm{nir}}+\rho_{\textrm{red}}+L} \\ L &= 1-2\gamma\textrm{NDVI}\cdot\textrm{WDVI} \\ \textrm{MSAVI}_2&=\frac{2\rho_{\textrm{nir}}+1-\sqrt{(2\rho_{\textrm{nir}}+1)^2-8(\rho_{\textrm{nir}}-\rho_{\textrm{red}})}}{2}\end{aligned} & This is a modification of SAVI to include a functional $L$; $\gamma$ is the slope of the soil line; $\textrm{MSAVI}_1$ uses an empirical approach to estimating $L$ whereas $\textrm{MSAVI}_2$ uses and inductive approach & \cite{Qi:1994bs} \\
\bottomrule
\end{tabular}
%\end{sidewaystable}
\end{table}
You have completely misunderstood the align* environment. Have a careful reading of the document pointed by localhost and the doc of the amsmath package.
\begin{table}[ht]
\caption{Commonly used spectral vegetation indices (SVI) and their associated references. Attention should be paid to the sensor(s) used to develop the indices as band spectral responses differ for various sensors. Spectral reflectance ranges are labeled with their common names as opposed to a wavelength range for clarity.}
\begin{tabular}{p{.15\textwidth} >{$\displaystyle}p{.4\textwidth}<{$} p{.25\textwidth} p{.2\textwidth}}
\toprule\\
\footnotesize SVI & \text{Equation} & Notes & References \\
\toprule
Simple Ratio Vegetation Index & \textrm{SRVI}=\frac{\rho_{\textrm{nir}}}{\rho_{\textrm{red}}}& Also known as the Ratio Vegetation Index (RVI) &\cite{Jordan:1969rm} \\
Perpendicular Vegetation Index & \textrm{PVI}=\frac{1}{\sqrt{\alpha^2+1}}((\rho_{\textrm{nir}}-\alpha)(\rho_{\textrm{red}}-\beta)) & $\alpha$ and $\beta$ are the slope and interslope of the soil-line in red/nir space & \cite{Richardson:1977ay} \\
Normalized Difference Vegetation Index & \textrm{NDVI}=\frac{\rho_{\textrm{nir}}-\rho_{\textrm{red}}}{\rho_{\textrm{nir}}+\rho_{\textrm{red}}} & Note & \cite{Rouse:1973tw} \\
Soil Adjusted Vegetation Index & \textrm{SAVI}=(1+L)\frac{\rho_{\textrm{nir}}-\rho_{\textrm{red}}}{\rho_{\textrm{nir}}+\rho_{\textrm{red}}+L} & The constant L is inversely correlated with LAI; 0.25 to 1 is a reasonable range & \cite{Huete:1988zl} \\
Transformed Soil Adjusted Vegetation Index & \textrm{TSAVI}=\frac{\alpha((\rho_{\textrm{nir}}-\alpha)(\rho_{\textrm{red}}-\beta))}{\alpha\rho_{\textrm{nir}}+\rho_{\textrm{red}}-\alpha\beta+\chi(1+\alpha^2)} & $\alpha$ and $\beta$ are as defined for PVI, $\chi$ is the negative abscissa of a point on the soil line $S$ & \cite{Baret:1989zh, Baret:1991rb} \\
Atmospherically Resistant Vegetation Index & \begin{aligned}[t]\textrm{ARVI}&=\frac{\rho_{\textrm{nir}}-\rho_{\textrm{rb}}}{\rho_{\textrm{nir}}+\rho_{\textrm{rb}}} \\ \rho_{\textrm{rb}}&=\rho_{\textrm{red}}-\gamma(\rho_{\textrm{blue}}-\rho_{\textrm{red}})\end{aligned} & $\gamma$ is dependent upon surface and atmospheric conditions; $\gamma=1$ is a good choice for most situations & \cite{Kaufman:1992kk} \\
Modified Soil Adjusted Vegetation Index & \begin{aligned}[t]\textrm{MSAVI}_1&=(1+L)\frac{\rho_{\textrm{nir}}-\rho_{\textrm{red}}}{\rho_{\textrm{nir}}+\rho_{\textrm{red}}+L} \\ L &= 1-2\gamma\textrm{NDVI}\cdot\textrm{WDVI} \\ \textrm{MSAVI}_2&=\frac{2\rho_{\textrm{nir}}+1-\sqrt{(2\rho_{\textrm{nir}}+1)^2-8(\rho_{\textrm{nir}}-\rho_{\textrm{red}})}}{2}\end{aligned} & This is a modification of SAVI to include a functional $L$; $\gamma$ is the slope of the soil line; $\textrm{MSAVI}_1$ uses an empirical approach to estimating $L$ whereas $\textrm{MSAVI}_2$ uses and inductive approach & \cite{Qi:1994bs} \\
\bottomrule
\end{tabular}
%\end{sidewaystable}
\end{table}
You have completely misunderstood the align* environment. Have a careful reading of the document pointed by localhost and the doc of the amsmath package.
Yes! That's great. I'll give it a good look. I'm new to LaTeX and tend to put the 'cart before the horse'