I am working within the, much appreciated, MastersDoctoralThesis class-file. However, LaTex is unable to compile after the usage of
\begin{align} \end{align}
Thanks!
Best,
Sean
\begin{align} \end{align}
\usepackage{mathtools} \usepackage{amsthm,amsmath,amssymb,amsfonts,exscale,latexsym,float,eucal}
\begin{align*} \textbf{y}_{t} &= \textbf{A'} \cdot \textbf{x}_{t} + \textbf{H'} \cdot \textbf{\xi_{t}} + \textbf{v}_{t},\\ \textbf{\xi_{t}} &= \textbf{F} \cdot \textbf{\xi_{t-1}} + \textbf{\varepsilon}_{t}, \end{align*} Here, $\textbf{y}_{t}$ is a vector of observed contemporaneous variables; $\textbf{x}_{t}$ is a vector of observed exogenous and lagged exogenous variables, and $\textbf{\xi_{t}}$ is the vector of unobserved states. The vectors of stochastic disturbances are assumed to be Gaussian and mutually uncorrelated, with mean zero and covariance matrices $\textbf{R}$ and $\textbf{Q}$, respectively: \begin{align*} \textbf{v_{t}} & \sim \mathcal{N}(0, \textbf{R}) \textbf{\varepsilon_{t}} & \sim \mathcal{N}(0, \textbf{Q}) \end{align*}
\begin{document}
\thesistitle{Thesis Title}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Masters/Doctoral Thesis % LaTeX Template % Version 2.5 (27/8/17) % % This template was downloaded from: % <!-- m --><a class="postlink" href="http://www.LaTeXTemplates.com">http://www.LaTeXTemplates.com</a><!-- m --> % % Version 2.x major modifications by: % Vel (vel@latextemplates.com) % % This template is based on a template by: % Steve Gunn (http://users.ecs.soton.ac.uk/srg/softwaretools/document/templates/) % Sunil Patel (http://www.sunilpatel.co.uk/thesis-template/) % % Template license: % CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[ english, % ngerman for German chapterinoneline, % Uncomment to place the chapter title next to the number on one line ]{MastersDoctoralThesis} % The class file specifying the document structure \usepackage{blindtext} \usepackage{mathtools} \begin{document} \begin{align*} y_{t} &= A' \cdot x_{t} + H' \cdot \xi_{t} + v_{t},\\ \xi_{t} &= F \cdot \xi_{t-1} + \varepsilon_{t}, \end{align*} Here, $y_{t}$ is a vector of observed contemporaneous variables; $x_{t}$ is a vector of observed exogenous and lagged exogenous variables, and $\xi_{t}$ is the vector of unobserved states. The vectors of stochastic disturbances are assumed to be Gaussian and mutually uncorrelated, with mean zero and covariance matrices $R$ and $Q$, respectively: \begin{align*} v_{t} & \sim \mathcal{N}(0, {R}) \varepsilon_{t} & \sim \mathcal{N}(0, {Q}) \end{align*} \end{document}
\mathbf
?Users browsing this forum: No registered users and 2 guests