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1 Question 1

The data that we are using in our analysis is aircondit provided in the boot

package. The observations are the times in hours between failures of air-
conditioning equipment, hence they are assumed to be exponentially distributed.
Our aim is to estimate the MLE using a boostrap method and estimate the bias
and standard error of it. Also, we will �nd a basic con�dence interval and a
percentile con�dence interval and compare the two.

1.1 Statistical background

The pdf of an exponential distribution is f(x) = λe−λx, x > 0, and the maximum

likelihood estimate is λ̂ = n∑
xi

1.2 Problem Solving

> data <- c(3,5,7,18,43,85,91,98,100,130,230,487)

> m.data <- mean(data)

> data.mle <- 1/m.data #analytical method

> data.mle

[1] 0.00925212

Using an optimization approach, we get the following:

> llik <- function(lambda)

+ { L <- lambda * exp(-lambda * data)

+ ll <- sum(log(L))

+ return(-ll) # max(llik) = min(-llik)

+ }

> optim(1,llik)$par

[1] 0.009228516

> nlm(llik,1)$estimate
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[1] 0.00925162

Now we are going to generate B = 1000 bootsrap samples and for each
of them calculate the mean and the MLE (analytically) and store them in
boot.means & boot.mle vectors. Here is the code and the outputs:

> B <- 1000

> data.vect <- c(3,5,7,18,43,85,91,98,100,130,230,487)

> boot.means <- numeric(B)

> boot.mle <- numeric(B)

> for (i in 1:B)

+ { boot.samp <- sample(data.vect,replace=T)

+ boot.means[i] <- mean(boot.samp)

+ boot.mle[i] <- 1/boot.means[i]

+ }

> par(mfrow =c(1,2))

> hist(boot.mle)

> hist(boot.means)
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Hence the estimates of the bias and standar error of the estimate are:

> bmle <- mean(boot.mle) - data.mle

> bmle # bias of the estimate
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[1] 0.001271437

> data.mle - bmle

[1] 0.007980683

> sd(boot.mle) # standard error of the estimate

[1] 0.004328079

The 95% bootstrap con�dence interval & percentile con�dence interval are
derived as follows:

> pci <- quantile(boot.mle, p = c(0.025,0.975))

> LL <- as.numeric(2*data.mle - pci[2])

> UL <- as.numeric(2*data.mle - pci[1])

> bbci <- c(LL,UL)

> pci # percentile confidence interval

2.5% 97.5%

0.005323281 0.022141245

> bbci # basic bootstrap confidence interval

[1] -0.003637004 0.013180960

> hist(boot.mle,freq=F,ylab="density",col="wheat")

> abline(v=data.mle,col="red")

> abline(v=pci[1],col="green")

> abline(v=pci[2],col="green")

> abline(v=bbci[1], col="blue")

> abline(v=bbci[2], col="blue")
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There is a signi�cant di�erence between the intervals, this is because of the
skew distribution, in this case the percentile con�dence interval is more reliable
in the sense that it will more accurately capture the true MLE 95% of the time
(see the graph above).

1.3 Summary

For this little exercise, we were asked to estimate the MLE of the distribution
of a data set that was exponentially distributed. For this purpose, we generated
1000 bootstrap samples for the MLE and computed the bias and the standard
error of the estimate. We found two con�dence intervals for the MLE and
concluded that the percentile con�dence interval was more accurate.

2 Question 2

The observations are an i.i.d sample from a Cauchy(θ,1) distribution. Our aim is
to estimate the MLE for θ using the Newton-Raphson method and the bisection
method.
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2.1 Relevant background

The pdf of a Cauchy(θ,1) distribution is in the form: f(x) = 1
π

(
1

(x−θ)2+1

)
,

where θis the location parameter and the scale parameter is 1, therefore the log
likehood function will be: g(θ) =

∑
(log(π)− log((xi − θ)2 + 1))

Its �rst derivative is: g′(θ) =
∑(

2(x−θ)
1+(x−θ)2

)
Its second derivative is: g′′(θ) =

∑(
2[(x−θ)2−1]
[1+(x−θ)2]2

)
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